Zobrazeno 1 - 10
of 31
pro vyhledávání: '"Maksim Kulichenko"'
Autor:
Maksim Kulichenko, Kipton Barros, Nicholas Lubbers, Ying Wai Li, Richard Messerly, Sergei Tretiak, Justin S. Smith, Benjamin Nebgen
Publikováno v:
Nature Computational Science. 3:230-239
Machine learning (ML) models, if trained to data sets of high-fidelity quantum simulations, produce accurate and efficient interatomic potentials. Active learning (AL) is a powerful tool to iteratively generate diverse data sets. In this approach, th
Autor:
Nikita Fedik, Roman Zubatyuk, Maksim Kulichenko, Nicholas Lubbers, Justin S. Smith, Benjamin Nebgen, Richard Messerly, Ying Wai Li, Alexander I. Boldyrev, Kipton Barros, Olexandr Isayev, Sergei Tretiak
Publikováno v:
Nature Reviews Chemistry. 6:653-672
Autor:
Anton S. Pozdeev, Wei-Jia Chen, Hyun Wook Choi, Maksim Kulichenko, Dao-Fu Yuan, Alexander I. Boldyrev, Lai-Sheng Wang
Publikováno v:
The Journal of Physical Chemistry A.
Autor:
Maksim Kulichenko, Kipton Barros, Nicholas Lubbers, Nikita Fedik, Guoqing Zhou, Sergei Tretiak, Benjamin Nebgen, Anders M. N. Niklasson
Publikováno v:
Journal of Chemical Theory and Computation.
Extended Lagrangian Born-Oppenheimer molecular dynamics (XL-BOMD) in its most recent shadow potential energy version has been implemented in the semiempirical PyTorch-based software PySeQM. The implementation includes finite electronic temperatures,
Autor:
Maksim Kulichenko, Kipton Barros, Nicholas Lubbers, Ying Wai Li, Richard Messerly, Sergei Tretiak, Justin Smith, Benjamin Nebgen
Machine learning (ML) models, if trained to datasets of high-fidelity quantum simulations, produce accurate and efficient interatomic potentials. Active learning (AL) is a powerful tool to iteratively generate diverse datasets. In this approach, the
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::dfd0c0bbe27494bd84d49df0541e8ea6
https://doi.org/10.21203/rs.3.rs-2109927/v1
https://doi.org/10.21203/rs.3.rs-2109927/v1
Autor:
Alvaro Muñoz-Castro, Ivan A. Popov, Nikita Fedik, Zhong-Ming Sun, Maksim Kulichenko, Nikolay V. Tkachenko, Alexander I. Boldyrev
Publikováno v:
European Journal of Inorganic Chemistry. 2021:4239-4250
Autor:
Hyun Wook Choi, Lai-Sheng Wang, Daofu Yuan, Maksim Kulichenko, Wei-Jia Chen, Alexander I. Boldyrev, Joseph Cavanagh
Publikováno v:
The Journal of Physical Chemistry A. 125:6751-6760
Because of its low toxicity, bismuth is considered to be a "green metal" and has received increasing attention in chemistry and materials science. To understand the chemical bonding of bismuth, here we report a joint experimental and theoretical stud
Autor:
Maksim Kulichenko, Justin S. Smith, Kipton Barros, Nikita Fedik, Alexander I. Boldyrev, Benjamin Nebgen, Sergei Tretiak, Nicholas Lubbers, Ying Wai Li
Publikováno v:
The Journal of Physical Chemistry Letters. 12:6227-6243
Machine learning (ML) is quickly becoming a premier tool for modeling chemical processes and materials. ML-based force fields, trained on large data sets of high-quality electron structure calculations, are particularly attractive due their unique co
Publikováno v:
The Journal of Physical Chemistry A. 125:4606-4613
The strong relativistic effects result in many interesting chemical and physical properties for gold and gold compounds. One of the most surprising findings has been that small gold clusters prefer planar structures. Dopants can be used to tune the e
Publikováno v:
The Journal of Physical Chemistry C. 125:9564-9570
Electrides are an unusual class of compounds where electrons are localized in space distinct from atomic positions and behave like anions. This type of localization makes electron density very “fle...