Zobrazeno 1 - 10
of 89
pro vyhledávání: '"Maks, Ovsjanikov"'
Publikováno v:
IEEE Transactions on Visualization and Computer Graphics
IEEE Transactions on Visualization and Computer Graphics, 2022
IEEE Transactions on Visualization and Computer Graphics (TVCG)
IEEE Transactions on Visualization and Computer Graphics, 2022
IEEE Transactions on Visualization and Computer Graphics (TVCG)
In this work, we present a novel method called WSDesc to learn 3D local descriptors in a weakly supervised manner for robust point cloud registration. Our work builds upon recent 3D CNN-based descriptor extractors, which leverage a voxel-based repres
Publikováno v:
ACM Transactions on Graphics
ACM Transactions on Graphics, 2022, 41 (3), pp.1-16. ⟨10.1145/3507905⟩
Transactions on Graphics
ACM Transactions on Graphics, 2022, 41 (3), pp.1-16. ⟨10.1145/3507905⟩
Transactions on Graphics
We introduce a new general-purpose approach to deep learning on 3D surfaces, based on the insight that a simple diffusion layer is highly effective for spatial communication. The resulting networks are automatically robust to changes in resolution an
Autor:
Robin Magnet, Maks Ovsjanikov
Spectral geometric methods have brought revolutionary changes to the field of geometry processing. Of particular interest is the study of the Laplacian spectrum as a compact, isometry and permutation-invariant representation of a shape. Some recent w
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e55f60075b7e9042012f6d9a603d18af
http://arxiv.org/abs/2303.05965
http://arxiv.org/abs/2303.05965
Publikováno v:
3DV 2022-International Conference on 3D Vision
3DV 2022-International Conference on 3D Vision, Sep 2022, Prague / Hybrid, Czech Republic
3DV 2022-International Conference on 3D Vision, Sep 2022, Prague / Hybrid, Czech Republic
In this work, we present a novel learning-based framework that combines the local accuracy of contrastive learning with the global consistency of geometric approaches, for robust non-rigid matching. We first observe that while contrastive learning ca
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::868ed0fc1c6385ffd32ed16a16f41c72
https://hal.inria.fr/hal-03831098
https://hal.inria.fr/hal-03831098
Publikováno v:
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
Autor:
Abhishek Sharma, Maks Ovsjanikov
Publikováno v:
ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
Autor:
Luca Moschella, Simone Melzi, Luca Cosmo, Filippo Maggioli, Or Litany, Maks Ovsjanikov, Leonidas Guibas, Emanuele Rodolà
Spectral geometric methods have brought revolutionary changes to the field of geometry processing. Of particular interest is the study of the Laplacian spectrum as a compact, isometry and permutation-invariant representation of a shape. Some recent w
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::47d9e7b6189b6331944ae75c2f1fc57b
https://hdl.handle.net/10278/5002939
https://hdl.handle.net/10278/5002939
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031200618
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::207db1fa0491d97e23feacb820a1b946
https://doi.org/10.1007/978-3-031-20062-5_20
https://doi.org/10.1007/978-3-031-20062-5_20
We propose a novel and flexible roof modeling approach that can be used for constructing planar 3D polygon roof meshes. Our method uses a graph structure to encode roof topology and enforces the roof validity by optimizing a simple but effective plan
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e0b0022824b07b7b0edfa47f72539332
http://arxiv.org/abs/2109.07683
http://arxiv.org/abs/2109.07683
Publikováno v:
CVPR
Shapes are often designed to satisfy structural properties and serve a particular functionality in the physical world. Unfortunately, most existing generative models focus primarily on the geometric or visual plausibility, ignoring the physical or st