Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Makrina Agaoglou"'
Publikováno v:
Axioms, Vol 7, Iss 4, p 69 (2018)
In this work, we study the in-plane oscillations of a finite lattice of particles coupled by linear springs under distributed harmonic excitation. Melnikov-type analysis is applied for the persistence of periodic oscillations of a reduced system.
Externí odkaz:
https://doaj.org/article/8de6207b70c243c898460e107ff675af
The study of the phase space of multidimensional systems is one of the central open problems in dynamical systems. Being able to distinguish chaoticity from regularity in nonlinear dynamical systems, as well as to determine the subspace of the phase
Externí odkaz:
http://arxiv.org/abs/2206.01768
Autor:
Jérôme Daquin, Rémi Pédenon-Orlanducci, Makrina Agaoglou, Guillermo García-Sánchez, Ana Maria Mancho
Publikováno v:
Physica D. 442
This paper introduces a new global dynamics and chaos indicator based on the method of Lagrangian Descriptor apt for discriminating ordered and deterministic chaotic motions in multidimensional systems. The selected implementation of this method requ
Publikováno v:
International Journal of Bifurcation and Chaos. 32
In this work we analyze the bifurcation of dividing surfaces that occurs as a result of two period-doubling bifurcations in a 2D caldera-type potential. We study the structure, the range, the minimum and maximum extents of the periodic orbit dividing
Autor:
Makrina Agaoglou, Guillermo García-Sánchez, Amaia Marcano Larrinaga, Gabriel Mouttapa, Ana M. Mancho
In the last years, there has been much interest in uncertainty quantification involving trajectories in ocean data sets. As more and more oceanic data become available the assessing quality of ocean models to address transport problems like oil spill
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::47a373fe62e59aa8686d63909ca6e4bd
https://doi.org/10.5194/egusphere-egu22-8583
https://doi.org/10.5194/egusphere-egu22-8583
Autor:
Jérôme Daquin, Pedenon-Orlanducci Remi, Makrina Agaoglou, Guillermo Garcia-Sanchez, Ana Maria Mancho
Publikováno v:
SSRN Electronic Journal.
Publikováno v:
Physica D: Nonlinear Phenomena. 439:133385
The study of the phase space of multidimensional systems is one of the central open problems in dynamical systems. Being able to distinguish chaoticity from regularity in nonlinear dynamical systems, as well as to determine the subspace of the phase
Autor:
Makrina Agaoglou
Σκοπός της διατριβής ήταν η μελέτη διακλαδώσεων και ευστάθειας περιοδικών λύσεων σε μη γραμμικά πλέγματα. Αρχικά μελετήσαμε ένα μοντέλ
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::13c219ff94df782110c4b41415458ed4
https://doi.org/10.12681/eadd/36460
https://doi.org/10.12681/eadd/36460
Publikováno v:
Digital.CSIC. Repositorio Institucional del CSIC
instname
instname
In this work, we analyze the bifurcation of dividing surfaces that occurs as a result of a pitchfork bifurcation of periodic orbits in a two degrees of freedom Hamiltonian System. The potential energy surface of the system that we consider has four c
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ab438afe820884f987042e900b4ff9bf
http://arxiv.org/abs/2107.09623
http://arxiv.org/abs/2107.09623
In this paper we demonstrate the capability of the method of Lagrangian descriptors to unveil the phase space structures that characterize transport in high-dimensional symplectic maps. In order to illustrate its use, we apply it to a four-dimensiona
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5192750a17e3e471e437678f4e0496e0
http://arxiv.org/abs/2103.06682
http://arxiv.org/abs/2103.06682