Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Majed El-Helou"'
Publikováno v:
Lecture Notes in Computer Science ISBN: 9783031250620
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d6b41953742c81a92a902eabfcabff5e
https://doi.org/10.1007/978-3-031-25063-7_22
https://doi.org/10.1007/978-3-031-25063-7_22
Autor:
Sabine Süsstrunk, Majed El Helou
Publikováno v:
IEEE Transactions on Image Processing. 29:4885-4897
Blind and universal image denoising consists of using a unique model that denoises images with any level of noise. It is especially practical as noise levels do not need to be known when the model is developed or at test time. We propose a theoretica
Autor:
Majed El Helou, Sabine Susstrunk
Publikováno v:
IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. 31
Classic image-restoration algorithms use a variety of priors, either implicitly or explicitly. Their priors are hand-designed and their corresponding weights are heuristically assigned. Hence, deep learning methods often produce superior image restor
Autor:
Yuntao Wu, Dongliang He, Fu Li, B. Z. Ding, Sy-Yen Kuo, Zhipeng Luo, Vishal Monga, Majed El Helou, Sabari Nathan, Songhua Liu, Fangya Li, Qing Wang, Maitreya Suin, Tongtong Zhao, Hao-Hsiang Yang, Ming-Ming Cheng, Sabine Süsstrunk, Li Xin, Priya Kansal, Chenghua Li, Zhen Li, Cheng-Ze Lu, Zhongyun Hu, Ntumba Elie Nsampi, Amirsaeed Yazdani, A. N. Rajagopalan, Zuo-Liang Zhu, Shanshan Zhao, Zeng-Sheng Kuang, Wanli Qian, Zhiguang Zhang, Radu Timofte, Ruifeng Deng, Tianwei Lin, Tao Lu, Yuanzhi Wang, Jianye He, Xiu-Li Shao, Wei-Ting Chen, Tiantong Guo, Ruofan Zhou, Yanduo Zhang, Jia-Xiong Qiu, Hao-Lun Luo
Publikováno v:
CVPR Workshops
Image relighting is attracting increasing interest due to its various applications. From a research perspective, im-age relighting can be exploited to conduct both image normalization for domain adaptation, and also for data augmentation. It also has
Publikováno v:
ICASSP
Localization of a set of nodes is an important and a thoroughly researched problem in robotics and sensor networks. This paper is concerned with the theory of localization from inner-angle measurements. We focus on the challenging case where no ancho
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d67ae250c1fd00fb3cb7d95a7a08b887
http://arxiv.org/abs/2005.04469
http://arxiv.org/abs/2005.04469
Publikováno v:
ICASSP
Extreme image or video completion, where, for instance, we only retain 1% of pixels in random locations, allows for very cheap sampling in terms of the required pre-processing. The consequence is, however, a reconstruction that is challenging for hum
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5e3b9cd77b47ecce0b5016fd70328c22
http://arxiv.org/abs/2004.06409
http://arxiv.org/abs/2004.06409
Publikováno v:
Computer Vision – ECCV 2020 Workshops ISBN: 9783030664145
ECCV Workshops (1)
ECCV Workshops (1)
In fluorescence microscopy live-cell imaging, there is a critical trade-off between the signal-to-noise ratio and spatial resolution on one side, and the integrity of the biological sample on the other side. To obtain clean high-resolution (HR) image
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::92a56b5214c01fca46b504ab3713e9dd
http://arxiv.org/abs/2003.05961
http://arxiv.org/abs/2003.05961
Publikováno v:
Computer Vision – ECCV 2020 ISBN: 9783030585167
ECCV (16)
ECCV (16)
Super-resolution and denoising are ill-posed yet fundamental image restoration tasks. In blind settings, the degradation kernel or the noise level are unknown. This makes restoration even more challenging, notably for learning-based methods, as they
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b3ee6329c66fdb1dd910bcf292b63b97
Publikováno v:
ICIP
Knowledge of lens characteristics is important to identify the best lens for a given capture scenario and application. Lens manufacturers provide many specifications in their data sheets, and multiple initiatives for testing and comparing different l
Autor:
Boaz Arad, Dong Liu, Feng Wu, Charis Lanaras, Silvano Galliani, Konrad Schindler, Tarek Stiebel, Simon Koppers, Philipp Seltsam, Ruofan Zhou, Majed El Helou, Ohad Ben-Shahar, Fayez Lahoud, Marjan Shahpaski, Ke Zheng, Lianru Gao, Bing Zhang, Ximin Cui, Haoyang Yu, Yigit Baran Can, Aitor Alvarez-Gila, Joost van de Weijer, Radu Timofte, Estibaliz Garrote, Adrian Galdran, Manoj Sharma, Sriharsha Koundinya, Avinash Upadhyay, Raunak Manekar, Rudrabha Mukhopadhyay, Himanshu Sharma, Santanu Chaudhury, Koushik Nagasubramanian, Luc Van Gool, Sambuddha Ghosal, Asheesh K. Singh, Arti Singh, Baskar Ganapathysubramanian, Soumik Sarkar, Lei Zhang, Ming-Hsuan Yang, Zhiwei Xiong, Chang Chen, Zhan Shi
Publikováno v:
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
ISBN:978-1-5386-6100-0
ISBN:978-1-5386-6100-0
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9f188b0528df64df0519a5aacfa92da3