Zobrazeno 1 - 10
of 226
pro vyhledávání: '"Majdoub, Mohamed"'
Autor:
Draouil, Dhouha, Majdoub, Mohamed
We investigate the initial value problem for a defocusing semi-linear wave equation with spatially growing nonlinearity. Our analysis leads to global well-posedness in the energy space. Furthermore, we obtain the linearization of energy-bounded solut
Externí odkaz:
http://arxiv.org/abs/2409.08594
We investigate the following inhomogeneous nonlinear Schr\"odinger equation with focusing energy critical nonlinearity and a defocusing perturbation in the radial regime, $$ i \partial_t u +\Delta u =|x|^{-a} |u|^{p-2} u - |x|^{-b} |u|^{4-2b}u \quad
Externí odkaz:
http://arxiv.org/abs/2408.14161
Autor:
Al-Essa, Lulwah, Majdoub, Mohamed
We investigate the lifespan of solutions to a specific variant of the semilinear wave equation, which incorporates weighted nonlinearity $$ u_{tt}-u_{xx} =|x|^\alpha |u|^p, \quad\mbox{for}\;\;\; (t,x)\in (0,\infty)\times\mathbb{R}, $$ where $p>1$, $\
Externí odkaz:
http://arxiv.org/abs/2404.16173
We investigate the blow-up for fourth-order Schr\"odinger equation with a mas-critical focusing inhomogeneous nonliniearity. We prove the finite/infinite time blow-up of non-radial solutions with negative energy. Our result serves as a valuable compl
Externí odkaz:
http://arxiv.org/abs/2312.07002
Autor:
Loayza, Miguel, Majdoub, Mohamed
We establish both the existence and uniqueness of non-negative global solutions for the nonlinear heat equation $u_t-\Delta u=|x|^{-\gamma}\,u^q$, $0
0$ in the whole space $\mathbb{R}^N$, and for non-negative initial data $u_0\in C_0(\m
Externí odkaz:
http://arxiv.org/abs/2311.17579
Autor:
Hamouda, Makram, Majdoub, Mohamed
We investigate the large time behavior of the solutions to the nonlinear focusing Schr\"odinger equation with a time-dependent damping in the energy sub-critical regime. Under non classical assumptions on the unsteady damping term, we prove some scat
Externí odkaz:
http://arxiv.org/abs/2311.14980
We investigate a class of nonlinear Schr\"odinger equations with competing inhomogeneous nonlinearities in the non-radial inter-critical regime, $$ i \partial_t u +\Delta u =|x|^{-b_1} |u|^{p_1-2} u - |x|^{-b_2} |u|^{p_2-2}u \quad \mbox{in} \,\, \mat
Externí odkaz:
http://arxiv.org/abs/2311.12693
Autor:
Hamouda, Makram, Majdoub, Mohamed
We investigate the Cauchy problem for the nonlinear Schr\"odinger equation with a time-dependent linear damping term. Under non standard assumptions on the loss dissipation, we prove the blow-up in the inter-critical regime, and the global existence
Externí odkaz:
http://arxiv.org/abs/2309.00849
We investigate the Cauchy problem for a heat equation involving a fractional harmonic oscillator and an exponential nonlinearity. Our main contributions are as follows: -We establish the local well-posedness in Orlicz spaces. -By considering small in
Externí odkaz:
http://arxiv.org/abs/2306.02828
Autor:
Majdoub, Mohamed, Saanouni, Tarek
We consider the magnetic nonlinear inhomogeneous Schr\"odinger equation $$i\partial_t u -\left(-i\nabla+\frac{\alpha}{|x|^2}(-x_2,x_1)\right)^2 u =\pm|x|^{-\varrho}|u|^{p-1}u,\quad (t,x)\in \mathbb{R}\times \mathbb{R}^2,$$ where $\alpha\in\mathbb{R}\
Externí odkaz:
http://arxiv.org/abs/2302.09545