Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Majda Chaieb"'
Publikováno v:
Electronic Journal of Differential Equations, Vol 2016, Iss 133,, Pp 1-13 (2016)
Using potential theory arguments, we study the existence and boundary behavior of positive solutions in the space of weighted continuous functions, for the fractional differential system $$\displaylines{ D^{\alpha }u(x)+p(x)u^{a_1}(x)v^{b_1}(x) =
Externí odkaz:
https://doaj.org/article/2814140956e546ccb2242b389129bac5
Publikováno v:
Opuscula Mathematica, Vol 36, Iss 3, Pp 315-336 (2016)
Let \(\Omega\) be a bounded domain in \(\mathbb{R}^{n}\) (\(n\geq 2\)) with a smooth boundary \(\partial \Omega\). We discuss in this paper the existence and the asymptotic behavior of positive solutions of the following semilinear elliptic system \[
Externí odkaz:
https://doaj.org/article/6b8daeb3c86949edbf853277b3e05af0
Existence and Asymptotic Behavior of Positive Solutions for a Coupled Fractional Differential System
Publikováno v:
Differential Equations and Dynamical Systems. 28:953-998
In this paper, we take up the existence and the asymptotic behavior of positive and continuous solutions to the following coupled fractional differential system $$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle D^{\alpha } u=a(x)\displaystyle
Publikováno v:
Mediterranean Journal of Mathematics. 13:5135-5146
We consider the following semilinear fractional initial value problem $$D^{\alpha }u(x)=a_{1}(x)u^{\sigma _{1}}(x)+a_{2}(x)u^{\sigma _{2}}, \quad x\in (0,1) \quad and \quad \lim_{x\longrightarrow 0^{+}}x^{1-\alpha }u(x)=0,$$ where \({0 < \alpha < 1}\
Publikováno v:
Mediterranean Journal of Mathematics. 12:1265-1285
We consider the following semilinear fractional initial value problem $$D^{\alpha} u(x) = a(x)u^{\sigma} (x), x\in (0, 1) \quad {\rm and} \quad \lim\limits_{x \longrightarrow0^{+}}x^{1 - \alpha} u(x) = 0,$$ where \({0 < \alpha < 1, \sigma < 1}\) and
Publikováno v:
Opuscula Mathematica, Vol 36, Iss 3, Pp 315-336 (2016)
Let \(\Omega\) be a bounded domain in \(\mathbb{R}^{n}\) (\(n\geq 2\)) with a smooth boundary \(\partial \Omega\). We discuss in this paper the existence and the asymptotic behavior of positive solutions of the following semilinear elliptic system \[