Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Maisnam Triveni"'
Autor:
N., Reingachan1 reinga14@gmail.com, Devi, Maisnam Triveni1 trivenimaisnam@gmail.com, Chanam, Barchand2 barchand_2004@yahoo.co.in
Publikováno v:
IAENG International Journal of Applied Mathematics. Dec2023, Vol. 53 Issue 4, p1445-1451. 7p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Far East Journal of Mathematical Sciences (FJMS). 136:17-28
Publikováno v:
The Journal of Analysis. 30:131-145
Let p(z) be a polynomial of degree n and $$\alpha$$ be any real or complex number, the polar derivative of p(z), denoted by $$D_{\alpha }p(z)$$ , is defined as $$\begin{aligned} D_{\alpha }p(z)=np(z)+(\alpha -z)p^{'}(z). \end{aligned}$$ Let $$p(z)=a_
Publikováno v:
Bulletin of the Iranian Mathematical Society. 48:1325-1338
Let p(z) be a polynomial of degree n with zero of multiplicity s at the origin and the remaining zeros in $$|z|\ge k$$ or in $$|z|\le k$$ , $$k>0$$ . In this paper, first we obtain inequalities about the dependence of |p(Rz)| on |p(rz)|, where $$|z|=
Publikováno v:
Journal of Classical Analysis. :137-148
Publikováno v:
São Paulo Journal of Mathematical Sciences.
Autor:
Barchand Chanam, Khangembam Babina Devi, Maisnam Triveni Devi, null Reingachan N., Kshetrimayum Krishnadas
Publikováno v:
AIP Conference Proceedings.
Autor:
Chanam, Barchand, Devi, Khangembam Babina, Devi, Maisnam Triveni, Reingachan N., Krishnadas, Kshetrimayum
Publikováno v:
AIP Conference Proceedings; 3/18/2022, Vol. 2435 Issue 1, p1-9, 9p
Autor:
Kshetrimayum Krishnadas, Thangjam Birkramjit Singh, Khangembam Babina Devi, Barchand Chanam, Maisnam Triveni
Publikováno v:
Journal of Physics: Conference Series. 1849:012007
If p(z) is a polynomial of degree n having no zero in |z| < k, k > 1, then for 0 < s < n and 1 ≤ R ≤ k Jain [2007 Turk. J. Math. 31 89-94] proved max | z | = R | p ( s ) ( z ) | ≤ 1 R s + k s [ { d s d x s ( 1 + x n ) } x = 1 ] ( R + k 1 + k )