Zobrazeno 1 - 10
of 166
pro vyhledávání: '"Maillet, J. M."'
Publikováno v:
SciPost Phys. 9, 086 (2020)
Using the framework of the quantum separation of variables (SoV) for higher rank quantum integrable lattice models [1], we introduce some foundations to go beyond the obtained complete transfer matrix spectrum description, and open the way to the com
Externí odkaz:
http://arxiv.org/abs/2003.04281
Publikováno v:
SciPost Phys. 9, 060 (2020)
We construct quantum Separation of Variables (SoV) bases for both the fundamental inhomogeneous $gl_{\mathcal{M}|\mathcal{N}}$ supersymmetric integrable models and for the inhomogeneous Hubbard model both defined with quasi-periodic twisted boundary
Externí odkaz:
http://arxiv.org/abs/1907.08124
Autor:
Maillet, J. M., Niccoli, G.
Publikováno v:
J. Stat. Mech. (2019) 094020
We implement our new Separation of Variables (SoV) approach for open quantum integrable models associated to higher rank representations of the reflection algebras. We construct the (SoV) basis for the fundamental representations of the $Y(gl_n)$ ref
Externí odkaz:
http://arxiv.org/abs/1904.00852
Autor:
Maillet, J. M., Niccoli, G.
Publikováno v:
SciPost Phys. 10, 026 (2021)
We describe the extension, beyond fundamental representations of the Yang-Baxter algebra, of our new construction of separation of variables bases for quantum integrable lattice models. The key idea underlying our approach is to use the commuting con
Externí odkaz:
http://arxiv.org/abs/1903.06618
Autor:
Maillet, J. M., Niccoli, G.
Publikováno v:
2019 J. Phys. A: Math. Theor. 52 315203
In this paper we apply our new separation of variables approach to completely characterize the transfer matrix spectrum for quantum integrable lattice models associated to fundamental evaluation representations of $\mathcal{U}_{q} (\widehat{gl_{n}})$
Externí odkaz:
http://arxiv.org/abs/1811.08405
Autor:
Maillet, J. M., Niccoli, G.
Publikováno v:
SciPost Phys. 6, 071 (2019)
We apply our new approach of quantum Separation of Variables (SoV) to the complete characterization of the transfer matrix spectrum of quantum integrable lattice models associated to gl(n)-invariant R-matrices in the fundamental representations. We c
Externí odkaz:
http://arxiv.org/abs/1810.11885
Autor:
Maillet, J. M., Niccoli, G.
Publikováno v:
Journal of Mathematical Physics 59, 091417 (2018)
We present a new approach to construct the separate variables basis leading to the full characterization of the transfer matrix spectrum of quantum integrable lattice models. The basis is generated by the repeated action of the transfer matrix itself
Externí odkaz:
http://arxiv.org/abs/1807.11572
In our previous paper [1] we have obtained, for the XXX spin-1/2 Heisenberg open chain, new determinant representations for the scalar products of separate states in the quantum separation of variables (SoV) framework. In this article we perform a si
Externí odkaz:
http://arxiv.org/abs/1807.05197
Publikováno v:
SciPost Phys. 5, 026 (2018)
This article is a direct continuation of [1] where we begun the study of the transfer matrix spectral problem for the cyclic representations of the trigonometric 6-vertex reflection algebra associated to the Bazhanov-Stroganov Lax operator. There we
Externí odkaz:
http://arxiv.org/abs/1802.08853
Publikováno v:
SciPost Phys. 2, 009 (2017)
We study the transfer matrix spectral problem for the cyclic representations of the trigonometric 6-vertex reflection algebra associated to the Bazhanov-Stroganov Lax operator. The results apply as well to the spectral analysis of the lattice sine-Go
Externí odkaz:
http://arxiv.org/abs/1607.02983