Zobrazeno 1 - 10
of 39
pro vyhledávání: '"Maiko Inagaki"'
Publikováno v:
IEEE Access, Vol 11, Pp 119200-119218 (2023)
To use energy generated in wind farms (WFs), which contain uncertainty in their output, as a primary power source in a power system, a sophisticated balancing operation scheme is required. This study focuses on a balancing group (BG) scheme combining
Externí odkaz:
https://doaj.org/article/30a813050d424b6b9e1a825946f6c5d0
Autor:
Hidemasa Matsuo, Mayumi Kamada, Akari Imamura, Madoka Shimizu, Maiko Inagaki, Yuko Tsuji, Motomu Hashimoto, Masao Tanaka, Hiromu Ito, Yasutomo Fujii
Publikováno v:
Scientific Reports, Vol 12, Iss 1, Pp 1-8 (2022)
Abstract Recent effective therapies enable most rheumatoid arthritis (RA) patients to achieve remission; however, some patients experience relapse. We aimed to predict relapse in RA patients through machine learning (ML) using data on ultrasound (US)
Externí odkaz:
https://doaj.org/article/724e0bed2d3742a8b737930d231ca3e2
Autor:
Giichi Takaesu, Maiko Inagaki, Keiyo Takubo, Yuji Mishina, Paul R Hess, Gregg A Dean, Akihiko Yoshimura, Kunihiro Matsumoto, Toshio Suda, Jun Ninomiya-Tsuji
Publikováno v:
PLoS ONE, Vol 7, Iss 11, p e51073 (2012)
A cytokine/stress signaling kinase Tak1 (Map3k7) deficiency is known to impair hematopoietic progenitor cells. However, the role of TAK1 signaling in the stem cell function of the hematopoietic system is not yet well defined. Here we characterized he
Externí odkaz:
https://doaj.org/article/6b707aa788c14c03ae9c4216e9ae859f
Publikováno v:
The Journal of The Institute of Electrical Engineers of Japan. 143:283-286
Publikováno v:
The Journal of The Institute of Electrical Engineers of Japan. 142:656-659
Publikováno v:
The Journal of The Institute of Electrical Engineers of Japan. 142:296-299
Publikováno v:
The Journal of The Institute of Electrical Engineers of Japan. 142:162-165
Autor:
Maiko Inagaki, Satoshi Ishitani, Shinnosuke Ito, Hiroki Tanaka, Yuki Yamamoto, Haruka Maeda, Ryogo Kubo, Taiki Ishii
Publikováno v:
The Journal of The Institute of Electrical Engineers of Japan. 141:706-709
Autor:
Hidemasa Matsuo, Mayumi Kamada, Akari Imamura, Madoka Shimizu, Maiko Inagaki, Yuko Tsuji, Motomu Hashimoto, Masao Tanaka, Hiromu Ito, Yasutomo Fujii
Publikováno v:
Scientific reports. 12(1)
Recent effective therapies enable most rheumatoid arthritis (RA) patients to achieve remission; however, some patients experience relapse. We aimed to predict relapse in RA patients through machine learning (ML) using data on ultrasound (US) examinat
Publikováno v:
2021 IEEE PES Innovative Smart Grid Technologies - Asia (ISGT Asia).