Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Maik Gröger"'
Publikováno v:
Israel Journal of Mathematics, 2022, Vol.247, pp.75-123 [Peer Reviewed Journal]
We study mean equicontinuous actions of locally compact $\sigma$-compact amenable groups on compact metric spaces. In this setting, we establish the equivalence of mean equicontinuity and topo-isomorphy to the maximal equicontinuous factor and provid
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a81856df38291facb895c0207b91a63f
https://ruj.uj.edu.pl/xmlui/handle/item/295540
https://ruj.uj.edu.pl/xmlui/handle/item/295540
Publikováno v:
COLIBRI
Universidad de la República
instacron:Universidad de la República
Nonlinearity, 2021, Vol.34(3), pp.1366 [Peer Reviewed Journal]
Universidad de la República
instacron:Universidad de la República
Nonlinearity, 2021, Vol.34(3), pp.1366 [Peer Reviewed Journal]
For a continuous map on the unit interval or circle, we define the bifurcation set to be the collection of those interval holes whose surviving set is sensitive to arbitrarily small changes of their position. By assuming a global perspective and focu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::282ed41ad9b87f2ac4d48a2ed23b218d
https://ruj.uj.edu.pl/xmlui/handle/item/269754
https://ruj.uj.edu.pl/xmlui/handle/item/269754
Autor:
Olga Lukina, Maik Gröger
We consider a minimal equicontinuous action of a finitely generated group $G$ on a Cantor set $X$ with invariant probability measure $\mu$, and stabilizers of points for such an action. We give sufficient conditions under which there exists a subgrou
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8a3211f34229d1d327f99dcd87cd2e4c
http://arxiv.org/abs/1911.00680
http://arxiv.org/abs/1911.00680
We study the geometric and topological properties of strange non-chaotic attractors created in non-smooth saddle-node bifurcations of quasiperiodically forced interval maps. By interpreting the attractors as limit objects of the iterates of a continu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::813ea74433d62519f19a2c19f73ba908
https://tud.qucosa.de/id/qucosa:70708
https://tud.qucosa.de/id/qucosa:70708
We study fractal properties of invariant graphs of hyperbolic and partially hyperbolic skew product diffeomorphisms in dimension three. We describe the critical (either Lipschitz or at all scales H\"older continuous) regularity of such graphs. We pro
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4d106b4dda6c6dd1580211dbae5a4b8e
Given an $\alpha > 1$ and a $\theta$ with unbounded continued fraction entries, we characterise new relations between Sturmian subshifts with slope $\theta$ with respect to (i) an $\alpha$-H\"oder regularity condition of a spectral metric, (ii) level
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7325363594a68d90a3db5a69c398d0be
http://arxiv.org/abs/1601.06435
http://arxiv.org/abs/1601.06435
Publikováno v:
Nonlinearity
We introduce amorphic complexity as a new topological invariant that measures the complexity of dynamical systems in the regime of zero entropy. Its main purpose is to detect the very onset of disorder in the asymptotic behaviour. For instance, it gi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6ebf6922b56e88cc9dd13223b977cafd
Autor:
Maik Gröger, Brian R. Hunt
The Kaplan-Yorke conjecture states that for "typical" dynamical systems with a physical measure, the information dimension and the Lyapunov dimension coincide. We explore this conjecture in a neighborhood of a system for which the two dimensions do n
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::42021638e9429617285ecb6862987e6e
http://arxiv.org/abs/1303.0030
http://arxiv.org/abs/1303.0030
Autor:
Maik Gröger, Tobias Jäger
We study dimensions of strange non-chaotic attractors and their associated physical measures in so-called pinched skew products, introduced by Grebogi and his coworkers in 1984. Our main results are that the Hausdorff dimension, the pointwise dimensi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f5c8180cfd04233ea4b6ca8b25f3be44
Autor:
Gabriel Fuhrmann, Maik Gröger
Publikováno v:
Mathematische Zeitschrift
We show how geometric methods from the general theory of fractal dimensions and iterated function systems can be deployed to study symbolic dynamics in the zero entropy regime. More precisely, we establish a dimensional characterization of the topolo