Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Mahler volume"'
Autor:
Freyer, Ansgar
The subject of this thesis is the volume of convex bodies K in R^n. Specifically, we investigate the volume vol(K) in the context of three different branches of convex geometry. In the first part of the thesis, we compare the volume of K to the numbe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::08a1718e69952326a81d8be83a7146a3
Autor:
Yiming Zhao, Dongmeng Xi
Publikováno v:
International Mathematics Research Notices. 2022:14151-14180
General affine invariances related to Mahler volume are introduced. We establish their affine isoperimetric inequalities by using a symmetrization scheme that involves a total of $2n$ elaborately chosen Steiner symmetrizations at a time. The necessit
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Matthew Tointon
Publikováno v:
The American Mathematical Monthly. 125:820-828
The "Mahler volume" is, intuitively speaking, a measure of how "round" a centrally symmetric convex body is. In one direction this intuition is given weight by a result of Santalo, who in the 1940s showed that the Mahler volume is maximized, in a giv
Publikováno v:
STOC
SIAM Journal on Computing
SIAM Journal on Computing, 2018, 47 (1), pp.1-51. ⟨10.1137/16M1061096⟩
SIAM Journal on Computing, Society for Industrial and Applied Mathematics, 2018, 47 (1), pp.1-51. ⟨10.1137/16M1061096⟩
SIAM Journal on Computing
SIAM Journal on Computing, 2018, 47 (1), pp.1-51. ⟨10.1137/16M1061096⟩
SIAM Journal on Computing, Society for Industrial and Applied Mathematics, 2018, 47 (1), pp.1-51. ⟨10.1137/16M1061096⟩
In the polytope membership problem, a convex polytope $K$ in $\mathbb{R}^d$ is given, and the objective is to preprocess $K$ into a data structure so that, given any query point $q \in \mathbb{R}^d$, it is possible to determine efficiently whether $q
Autor:
Youjiang Lin, Gangsong Leng
Publikováno v:
Bulletin of the Korean Mathematical Society. 51:1023-1029
In the paper, we define a class of convex bodies in R n –parallelsections homothety bodies, and for some special parallel sections homoth-ety bodies, we prove that n-cubes have the minimal Mahler volume. 1. IntroductionThe well-known Mahler’s co
Autor:
Youjiang Lin, Gangsong Leng
Publikováno v:
Bulletin of the Korean Mathematical Society. 51:129-137
Autor:
Gangsong Leng, Youjiang Lin
Publikováno v:
Journal of Mathematical Inequalities. :375-404
In (22), Meyer and Reisner proved the Mahler conjecture for rovelution bodies. In this paper, using a new method, we prove that among origin-symmetric bodies of revolution in R 3 , cylinders have the minimal Mahler volume. Further, we prove that amon
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Joseph Horowitz
Publikováno v:
Journal of the Society for American Music. 3:104-110