Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Mahfouf, Rémy"'
Autor:
Mahfouf, Rémy
We prove Russo-Seymour-Welsh type crossing estimates for the FK-Ising model on general s-embeddings whose origami map has an asymptotic Lipschitz constant strictly smaller than $1$, provided a mild non-degeneracy assumption is satisfied. This result
Externí odkaz:
http://arxiv.org/abs/2309.08470
Autor:
Li, Jhih-Huang, Mahfouf, Rémy
We introduce Kadanoff-Ceva order-disorder operators in the quantum Ising model. This approach was first used for the classical planar Ising model and recently put back to the stage. This representation turns out to be equivalent to the loop expansion
Externí odkaz:
http://arxiv.org/abs/2112.04811
We prove universality of spin correlations in the scaling limit of the planar Ising model on isoradial graphs with uniformly bounded angles and Z-invariant weights. Specifically, we show that in the massive scaling limit, i.e., as the mesh size $\del
Externí odkaz:
http://arxiv.org/abs/2104.12858
We discuss the magnetization $M_m$ in the $m$-th column of the zig-zag layered 2D Ising model on a half-plane using Kadanoff-Ceva fermions and orthogonal polynomials techniques. Our main result gives an explicit representation of $M_m$ via $m\times m
Externí odkaz:
http://arxiv.org/abs/1904.09168
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Mahfouf, Rémy
In this thesis we explore the existence and the universality of the planar Ising model, at and near criticality. Basing upon the formalism of Kadanoff and Ceva, we study by discrete complex analysis means the scaling limit and large scale properties
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______166::01848fa4891908cb90a1db889e9c124e
https://theses.hal.science/tel-03926899
https://theses.hal.science/tel-03926899