Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Maher, Charles Emmett"'
Formulating order metrics that sensitively quantify the degree of order/disorder in many-particle systems in $d$-dimensional Euclidean space $\mathbb{R}^d$ across length scales is an outstanding challenge in physics, chemistry, and materials science.
Externí odkaz:
http://arxiv.org/abs/2408.11702
Hyperuniform point patterns can be classified by the hyperuniformity scaling exponent $\alpha > 0$, that characterizes the power-law scaling behavior of the structure factor $S(\mathbf{k})$ as a function of wavenumber $k\equiv|\mathbf{k}|$ in the vic
Externí odkaz:
http://arxiv.org/abs/2405.03752
Publikováno v:
Physical Review E, 108, 064602 (2023)
The maximally random jammed (MRJ) state is the most random configuration of strictly jammed (mechanically rigid) nonoverlapping objects. MRJ packings are hyperuniform, meaning their long-wavelength density fluctuations are anomalously suppressed comp
Externí odkaz:
http://arxiv.org/abs/2311.06970
Publikováno v:
Physical Review Materials, 6 025603 (2022)
Dense, disordered packings of particles are useful models of low-temperature amorphous phases of matter, biological systems, granular media, and colloidal systems. The study of dense packings of nonspherical particles enables one to ascertain how rot
Externí odkaz:
http://arxiv.org/abs/2111.14954
The study of hard-particle packings is of fundamental importance in physics, chemistry, cell biology, and discrete geometry. Much of the previous work on hard-particle packings concerns their densest possible arrangements. By contrast, we examine kin
Externí odkaz:
http://arxiv.org/abs/2103.06290
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.