Zobrazeno 1 - 10
of 30
pro vyhledávání: '"Magiera, Jim"'
Autor:
Magiera, Jim, Rohde, Christian
Understanding the dynamics of phase boundaries in fluids requires quantitative knowledge about the microscale processes at the interface. We consider the sharp-interface motion of compressible two-component flow, and propose a heterogeneous multiscal
Externí odkaz:
http://arxiv.org/abs/2309.00876
Autor:
Magiera, Jim, Rohde, Christian
The dynamics of compressible liquid-vapor flow depends sensitively on the microscale behavior at the phase boundary. We consider a sharp-interface approach, and propose a multiscale model to describe liquid-vapor flow accurately, without imposing ad-
Externí odkaz:
http://arxiv.org/abs/2204.02233
An interface preserving moving mesh algorithm in two or higher dimensions is presented. It resolves a moving $(d-1)$-dimensional manifold directly within the $d$-dimensional mesh, which means that the interface is represented by a subset of moving me
Externí odkaz:
http://arxiv.org/abs/2112.11956
Neural networks are increasingly used in complex (data-driven) simulations as surrogates or for accelerating the computation of classical surrogates. In many applications physical constraints, such as mass or energy conservation, must be satisfied to
Externí odkaz:
http://arxiv.org/abs/1904.12794
Autor:
Magiera, Jim, Rohde, Christian
Publikováno v:
PROMS, 237:291-304, 2016
To describe complex flow systems accurately, it is in many cases important to account for the properties of fluid flows on a microscopic scale. In this work, we focus on the description of liquid-vapor flow with a sharp interface between the phases.
Externí odkaz:
http://arxiv.org/abs/1804.01411
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Journal of Computational Physics 15 May 2020 409
Autor:
Magiera, Jim, Rohde, Christian
Publikováno v:
Communications on Applied Mathematics and Computation; 20240101, Issue: Preprints p1-30, 30p
Autor:
Rybak, Iryna, Magiera, Jim
Publikováno v:
In Journal of Computational Physics 1 September 2014 272:327-342
An interface preserving moving mesh algorithm in two or higher dimensions is presented. It resolves a moving $(d-1)$-dimensional manifold directly within the $d$-dimensional mesh, which means that the interface is represented by a subset of moving me
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2300d89b206de1c7266b7138c61100e3
http://arxiv.org/abs/2112.11956
http://arxiv.org/abs/2112.11956