Zobrazeno 1 - 10
of 35
pro vyhledávání: '"Magee, Allan Ross"'
In this paper, we present two deep learning-based hybrid data-driven reduced order models for the prediction of unsteady fluid flows. The first model projects the high-fidelity time series data from a finite element Navier-Stokes solver to a low-dime
Externí odkaz:
http://arxiv.org/abs/2009.04396
Autor:
Liu, Bin, Magee, Allan Ross
In this work the numerical stability of a streamline singular hyperbolic/saddle critical point (HSP) and its relationship with the divergence of pressure force/fluid flux are numerically investigated at low Reynolds numbers. Three canonical configura
Externí odkaz:
http://arxiv.org/abs/2006.05306
In this paper, an end-to-end nonlinear model reduction methodology is presented based on the convolutional recurrent autoencoder networks. The methodology is developed in the context of the overall data-driven reduced-order model framework proposed i
Externí odkaz:
http://arxiv.org/abs/2003.12147
Publikováno v:
In Ocean Engineering 15 November 2020 216
Publikováno v:
In Ocean Engineering 15 November 2019 192
Publikováno v:
In Ocean Engineering 15 March 2019 176:158-168
Publikováno v:
In Ocean Engineering 1 February 2019 173:732-747
Autor:
Wan, Ling, Zhang, Chi, Magee, Allan Ross, Jin, Jingzhe, Han, Mengmeng, Ang, Kok Keng, Hellan, Øyvind
Publikováno v:
In Ocean Engineering 15 December 2018 170:361-373
Autor:
Wan, Ling, Han, Mengmeng, Jin, Jingzhe, Zhang, Chi, Magee, Allan Ross, Hellan, Øyvind, Wang, Chien Ming
Publikováno v:
In Ocean Engineering 15 January 2018 148:247-262