Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Magdalena Scherer"'
Autor:
Magdalena Scherer
Publikováno v:
Journal of Applied Mathematics and Computational Mechanics, Vol 17, Iss 1, Pp 61-68 (2018)
Externí odkaz:
https://doaj.org/article/d36a0640438347b7af571be3a4d102b1
Autor:
Magdalena Scherer, Piotr Milczarski
Publikováno v:
Energies, Vol 14, Iss 22, p 7778 (2021)
In the paper, we present a method of automatic evaluation and optimization of production processes towards low-carbon-emissions products. The method supports the management of production lines and is based on unsupervised machine learning methods, i.
Externí odkaz:
https://doaj.org/article/b5158055439a47b195741fc03868d8ab
Autor:
Magdalena Scherer
Publikováno v:
Production Engineering Archives, Vol 15(2017), Pp 11-14 (2017)
Appropriate management of waste streams is a very important part of business operations as it is reflected in the reduction in the flow and use of materials. It also minimizes negative impact on the environment. The article discusses the capabilitie
Externí odkaz:
https://doaj.org/article/9dc70ae1f94f4bf89106f95883589404
Autor:
Magdalena Scherer
Publikováno v:
Journal of Applied Mathematics and Computational Mechanics, Vol 16, Iss 2, Pp 135-144 (2017)
Externí odkaz:
https://doaj.org/article/4169e4f5f6604c3594309323b828132f
Autor:
Anna Tuchołka, Magdalena Scherer
Publikováno v:
Artificial Intelligence and Soft Computing ISBN: 9783031234798
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b034ee1caac9a90898d9b8c4947f00c5
https://doi.org/10.1007/978-3-031-23480-4_29
https://doi.org/10.1007/978-3-031-23480-4_29
Publikováno v:
Journal of Artificial Intelligence and Soft Computing Research. 11:319-330
Data clustering is an important method used to discover naturally occurring structures in datasets. One of the most popular approaches is the grid-based concept of clustering algorithms. This kind of method is characterized by a fast processing time
Publikováno v:
Journal of Artificial Intelligence and Soft Computing Research. 10:113-123
Large-scale image repositories are challenging to perform queries based on the content of the images. The paper proposes a novel, nested-dictionary data structure for indexing image local features. The method transforms image local feature vectors in
Efficient lead management allows substantially enhancing online channel marketing programs. In the paper, we classify website traffic into human- and bot-origin ones. We use feedforward neural networks with embedding layers. Moreover, we use one-hot
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4fb1bffa2b5f284b928be7cae2d05dab
https://ruj.uj.edu.pl/xmlui/handle/item/286968
https://ruj.uj.edu.pl/xmlui/handle/item/286968
Publikováno v:
Artificial Intelligence and Soft Computing ISBN: 9783030615338
ICAISC (2)
ICAISC (2)
We present the possibilities of using convolutional and convolutional recurrent network structures to classify large text sets on the example of job offer descriptions. In the case of recruitment agencies and job offer web pages, it is essential to h
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::85e5cf6f8f8fb8e6cbf047361a1eb6cb
https://doi.org/10.1007/978-3-030-61534-5_34
https://doi.org/10.1007/978-3-030-61534-5_34
Autor:
Marcin Korytkowski, Rafal A. Angryk, Agnieszka Siwocha, Roman Senkerik, Magdalena Scherer, Mirosław Kordos
Publikováno v:
Journal of Artificial Intelligence and Soft Computing Research
Fast content-based image retrieval is still a challenge for computer systems. We present a novel method aimed at classifying images by fuzzy rules and local image features. The fuzzy rule base is generated in the first stage by a boosting procedure.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6c15fb5166e81762aa33d3272cb246d5
http://publikace.k.utb.cz/handle/10563/1009514
http://publikace.k.utb.cz/handle/10563/1009514