Zobrazeno 1 - 10
of 41
pro vyhledávání: '"Maeda, Yota"'
An ecosystem of Transformer-based models has been established by building large models with extensive data. Parameter-efficient fine-tuning (PEFT) is a crucial technology for deploying these models to downstream tasks with minimal cost while achievin
Externí odkaz:
http://arxiv.org/abs/2411.03855
All arithmetic non-compact ball quotients by Deligne-Mostow's unitary monodromy group arise as sub-ball quotients of either of two spaces called ancestral cases, corresponding to Gaussian or Eisenstein Hermitian forms respectively. In our previous pa
Externí odkaz:
http://arxiv.org/abs/2403.18345
Autor:
Maeda, Yota
甲第24385号
理博第4884号
新制||理||1699(附属図書館)
学位規則第4条第1項該当
Doctor of Science
Kyoto University
DFAM
理博第4884号
新制||理||1699(附属図書館)
学位規則第4条第1項該当
Doctor of Science
Kyoto University
DFAM
Externí odkaz:
http://hdl.handle.net/2433/283504
Recently, the importance of analysing data and collecting valuable insight efficiently has been increasing in various fields. Estimating mutual information (MI) plays a critical role to investigate the relationship among multiple random variables wit
Externí odkaz:
http://arxiv.org/abs/2310.12396
Autor:
Hulek, Klaus, Maeda, Yota
The moduli space of $8$ points on $\mathbb{P}^1$, a so-called ancestral Deligne-Mostow space, is, by work of Kond\={o}, also a moduli space of K3 surfaces. We prove that the Deligne-Mostow isomorphism does not lift to a morphism between the Kirwan bl
Externí odkaz:
http://arxiv.org/abs/2211.00052
Autor:
Maeda, Yota
Publikováno v:
J. Algebra (2024)
To prove that a modular variety is of general type, there are three types of obstructions: reflective, cusp and elliptic obstructions. In this paper, we give a quantitative estimate of the reflective obstructions for the unitary case. This shows in p
Externí odkaz:
http://arxiv.org/abs/2204.01128
Autor:
Maeda, Yota
Publikováno v:
In Journal of Algebra 1 June 2024 647:341-399
Autor:
Maeda, Yota
Publikováno v:
Math. Nachr. (2023), 1-29
We study the branch divisors on the boundary of the canonical toroidal compactification of ball quotients. We show a criterion, the low slope cusp form trick, for proving that ball quotients are of general type. Moreover, we classify when irregular c
Externí odkaz:
http://arxiv.org/abs/2108.10253
Autor:
Maeda, Yota, Odaka, Yuji
Publikováno v:
Springer Proceedings in Mathematics & Statistics(PROMS, volume 409), 2023, 633-664
We prove that the Satake-Baily-Borel compactification of certain Shimura varieties are Fano varieties, Calabi-Yau varieties or have ample canonical divisors with mild singularities. We also prove some variants statements, give applications and discus
Externí odkaz:
http://arxiv.org/abs/2105.08254
Autor:
Maeda, Yota
Publikováno v:
Acta Arithmetica 204 (2022), 1-18
We study the modularity of the generating series of special cycles on unitary Shimura varieties over CM-fields of degree $2d$ associated with a Hermitian form in $n+1$ variables whose signature is $(n,1)$ at $e$ real places and $(n+1,0)$ at the remai
Externí odkaz:
http://arxiv.org/abs/2101.09232