Zobrazeno 1 - 10
of 265
pro vyhledávání: '"Madrid, Jose"'
Let $K_n=(V,E)$ be the complete graph with $n\geq 3$ vertices (here $V$ and $E$ denote the set of vertices and edges of $K_n$ respectively). We find the optimal value ${\bf{C}}_{n,p}$ such that the inequality $$\|f-m_f\|_p\le {\bf C}_{n,p}{\rm Var}_{
Externí odkaz:
http://arxiv.org/abs/2411.12079
The periodic tiling conjecture asserts that if a region $\Sigma\subset \mathbb R^d$ tiles $\mathbb R^d$ by translations then it admits at least one fully periodic tiling. This conjecture is known to hold in $\mathbb R$, and recently it was disproved
Externí odkaz:
http://arxiv.org/abs/2408.02151
Autor:
Valero, José Reina, Madrid, Jose R. Navarro, Blas, Diego, Morcillo, Alejandro Díaz, Irastorza, Igor García, Gimeno, Benito, Cabrera, Juan Monzó
We present the first analysis using RADES-BabyIAXO cavities as detectors of high-frequency gravitational waves (HFGWs). In particular, we discuss two configurations for distinct frequency ranges of HFGWs: Cavity 1, mostly sensitive at a frequency ran
Externí odkaz:
http://arxiv.org/abs/2407.20482
This article reviews different microwave technologies used in dark matter axion detection experiments with resonant cavities. The general concepts of the experiment are presented and ways to optimize the design parameters of microwave resonators are
Externí odkaz:
http://arxiv.org/abs/2404.15926
We show that for all $A, B \subseteq \{0,1,2\}^{d}$ we have $$ |A+B|\geq (|A||B|)^{\log(5)/(2\log(3))}. $$ We also show that for all finite $A,B \subset \mathbb{Z}^{d}$, and any $V \subseteq\{0,1\}^{d}$ the inequality $$ |A+B+V|\geq |A|^{1/p}|B|^{1/q
Externí odkaz:
http://arxiv.org/abs/2404.04486
Autor:
Abiad, Aida, de Lima, Leonardo, Desai, Dheer Noal, Guo, Krystal, Hogben, Leslie, Madrid, Jose
The energy of a graph $G$ is the sum of the absolute values of the eigenvalues of the adjacency matrix of $G$. Let $s^+(G), s^-(G)$ denote the sum of the squares of the positive and negative eigenvalues of $G$, respectively. It was conjectured by [El
Externí odkaz:
http://arxiv.org/abs/2303.11930
We prove the sharp isoperimetric inequality $$ \mathbb{E} \,h_{A}^{\log_{2}(3/2)} \geq \mu(A)^{*} (\log_{2}(1/\mu(A)^{*}))^{\log_{2}(3/2)} $$ for all sets $A \subseteq \{0,1\}^n$, where $\mu$ denotes the uniform probability measure, $\mu(A)^{*}=\min\
Externí odkaz:
http://arxiv.org/abs/2303.06738
We prove the sharp mixed norm $(l^2, L^{q}_{t}L^{r}_{x})$ decoupling estimate for the paraboloid in $d + 1$ dimensions.
Comment: 19 pages, fixed formatting and corrected typos
Comment: 19 pages, fixed formatting and corrected typos
Externí odkaz:
http://arxiv.org/abs/2303.04773
Autor:
Aja, Beatriz, Cuendis, Sergio Arguedas, Arregui, Ivan, Artal, Eduardo, Barreiro, R. Belén, Casas, Francisco J., de Ory, Maria C., Díaz-Morcillo, Alejandro, de la Fuente, Luisa, Gallego, Juan Daniel, García-Barceló, José María, Gimeno, Benito, Gomez, Alicia, Granados, Daniel, Kavanagh, Bradley J., Laso, Miguel A. G., Lopetegi, Txema, Lozano-Guerrero, Antonio José, Magaz, Maria T., Martín-Pintado, Jesús, Martínez-González, Enrique, Miralda-Escudé, Jordi, Monzó-Cabrera, Juan, Navarro-Madrid, Jose R., Chico, Ana B. Nuñez, Pascual, Juan Pablo, Pelegrin, Jorge, Garay, Carlos Peña, Rodriguez, David, Socuéllamos, Juan M., Teberio, Fernando, Teniente, Jorge, Vielva, Patricio, Vila, Iván, Vilar, Rocío, Villa, Enrique
We propose a novel experiment, the Canfranc Axion Detection Experiment (CADEx), to probe dark matter axions with masses in the range 330-460 $\mu$eV, within the W-band (80-110 GHz), an unexplored parameter space in the well-motivated dark matter wind
Externí odkaz:
http://arxiv.org/abs/2206.02980
We give new proofs of the description convex hulls of space curves $\gamma : [a,b] \mapsto \mathbb{R}^{d}$ having totally positive torsion. These are curves such that all the leading principal minors of $d\times d$ matrix $(\gamma', \gamma'', \ldots,
Externí odkaz:
http://arxiv.org/abs/2201.12932