Zobrazeno 1 - 10
of 18
pro vyhledávání: '"Madhukar M. Rao"'
Autor:
Mariam, Ashish Magar, Manish Joshi, Pachalla S. Rajagopal, Arshad Khan, Madhukar M. Rao, Balvinder K. Sapra
Publikováno v:
ACS Omega, Vol 6, Iss 26, Pp 16876-16889 (2021)
Externí odkaz:
https://doaj.org/article/71ed8f7dea924e08b8da7a050f196e88
Autor:
Pachalla S. Rajagopal, Madhukar M. Rao, Manish Joshi, Mariam, Balvinder Kaur Sapra, Arshad Khan, Ashish Magar
Publikováno v:
ACS Omega
ACS Omega, Vol 6, Iss 26, Pp 16876-16889 (2021)
ACS Omega, Vol 6, Iss 26, Pp 16876-16889 (2021)
The airborne transmission of the COVID-19 virus has been suggested as a major mode of transmission in recent studies. In this context, we studied the spatial transmission of COVID-19 vectors in an indoor setting representative of a typical office roo
Publikováno v:
Lecture Notes in Mechanical Engineering ISBN: 9789811551826
A high-fidelity computational method for modeling multi-phase wastewater flow is developed to understand the unsteady flow structures so as to facilitate the design of components of a typical underground wastewater drainage system consisting of a tan
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e5797df87ca82b94bbff51e1924a8d06
https://doi.org/10.1007/978-981-15-5183-3_33
https://doi.org/10.1007/978-981-15-5183-3_33
Publikováno v:
Sustainable Development for Energy, Power, and Propulsion ISBN: 9789811556661
This study presents a computational model for the detailed prediction of particulate matter size distribution in thermal precipitators systems by coupling CFD with population balance models (ACRi, 2016 [1]; Ni et al. in Fuel 228:215–225, 2018 [23];
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6fe0a60561efbf745414e4f11924fcee
https://doi.org/10.1007/978-981-15-5667-8_18
https://doi.org/10.1007/978-981-15-5667-8_18
Autor:
Madhukar M. Rao, Akshai K. Runchal
Publikováno v:
50 Years of CFD in Engineering Sciences ISBN: 9789811526695
Computational Fluid Dynamics appears to be poised on the threshold of rapid advances powered by the recent developments in deep machine learning. Deep machine learning will be used to improve the speed, accuracy and, the user-friendliness of CFD soft
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::4aee9305ec134aad2739befd41d78b0d
https://doi.org/10.1007/978-981-15-2670-1_22
https://doi.org/10.1007/978-981-15-2670-1_22
Autor:
Janki Shinde, Y. S. Mayya, Akshai K. Runchal, Priya Rajagopal, S. Anand, B.K. Sapra, Madhukar M. Rao, Manish Joshi
Publikováno v:
Energy for Propulsion ISBN: 9789811074721
Flow and aerosol transport and dynamics in a reaction chamber, part of an aerosol generation system, is analyzed by coupling Computational Fluid Dynamics (CFD) and Aerosol Dynamic Equation. A predictable parametric aerosol output from reaction chambe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d88f9b56b8de92e3c6b8e29ebd4574f2
https://doi.org/10.1007/978-981-10-7473-8_14
https://doi.org/10.1007/978-981-10-7473-8_14
Publikováno v:
Proceedings of CHT-17 ICHMT International Symposium on Advances in Computational Heat Transfer May 28-June 1, 2017, Napoli, Italy.
This text describes several computational techniques that can be applied to a variety of problems in thermo-fluid physics, multi-phase flow, and applied mechanics involving moving flow boundaries. Step-by-step discussions of numerical procedures incl
Autor:
Wei Shyy, Madhukar M. Rao
Publikováno v:
International Journal for Numerical Methods in Engineering. 40:1231-1261
Publikováno v:
International Journal for Numerical Methods in Fluids. 22:691-712
In this work a mixed Eulerian–Lagrangian technique is devised, hereinafter abbreviated as ELAFINT (Eulerian–Lagrangian Algorithm For INterface Tracking). The method is capable of handling fluid flows in the presence of both irregularly shaped sol