Zobrazeno 1 - 10
of 23
pro vyhledávání: '"Madeleine ABERNOT"'
Publikováno v:
Frontiers in Neuroscience, Vol 17 (2023)
In the human brain, learning is continuous, while currently in AI, learning algorithms are pre-trained, making the model non-evolutive and predetermined. However, even in AI models, environment and input data change over time. Thus, there is a need t
Externí odkaz:
https://doaj.org/article/8700435fae8f4c6d962dbc068c8c65ad
Autor:
Corentin Delacour, Stefania Carapezzi, Gabriele Boschetto, Madeleine Abernot, Thierry Gil, Nadine Azemard, Aida Todri-Sanial
Publikováno v:
Neuromorphic Computing and Engineering, Vol 3, Iss 3, p 034004 (2023)
Digital electronics based on von Neumann’s architecture is reaching its limits to solve large-scale problems essentially due to the memory fetching. Instead, recent efforts to bring the memory near the computation have enabled highly parallel compu
Externí odkaz:
https://doaj.org/article/f30f913aa484460292035f4380979771
Autor:
Madeleine Abernot, Todri-Sanial Aida
Publikováno v:
Neuromorphic Computing and Engineering, Vol 3, Iss 1, p 014006 (2023)
The growing number of edge devices in everyday life generates a considerable amount of data that current AI algorithms, like artificial neural networks, cannot handle inside edge devices with limited bandwidth, memory, and energy available. Neuromorp
Externí odkaz:
https://doaj.org/article/ba4eb1cfb81a4bf1b6666ddf6523cf4d
Autor:
Madeleine Abernot, Thierry Gil, Manuel Jiménez, Juan Núñez, María J. Avellido, Bernabé Linares-Barranco, Théophile Gonos, Tanguy Hardelin, Aida Todri-Sanial
Publikováno v:
Frontiers in Neuroscience, Vol 15 (2021)
Computing paradigm based on von Neuman architectures cannot keep up with the ever-increasing data growth (also called “data deluge gap”). This has resulted in investigating novel computing paradigms and design approaches at all levels from materi
Externí odkaz:
https://doaj.org/article/a138fa4ffe3c4e2f83d7bcbb05aef9ba
Publikováno v:
NICE 2023-Neuro-Inspired Computational Elements Workshop
NICE 2023-Neuro-Inspired Computational Elements Workshop, Apr 2023, San Antonio, TX, United States. ⟨10.1145/3584954.3584999⟩
Proceedings of the 2023 Annual Neuro-Inspired Computational Elements Conference, NICE 2023, 100-107
STARTPAGE=100;ENDPAGE=107;TITLE=Proceedings of the 2023 Annual Neuro-Inspired Computational Elements Conference, NICE 2023
NICE 2023-Neuro-Inspired Computational Elements Workshop, Apr 2023, San Antonio, TX, United States. ⟨10.1145/3584954.3584999⟩
Proceedings of the 2023 Annual Neuro-Inspired Computational Elements Conference, NICE 2023, 100-107
STARTPAGE=100;ENDPAGE=107;TITLE=Proceedings of the 2023 Annual Neuro-Inspired Computational Elements Conference, NICE 2023
International audience; Mobile robot navigation tasks can be applied in various domains, such as in space, underwater, and transportation industries, among others. In navigation, robots analyze their environment from sensors and navigate safely up to
Autor:
Madeleine ABERNOT, Gabriele BOSCHETTO, Stefania CARAPEZZI, Corentin DELACOUR, Thierry GIL, Aida TODRI-SANIAL
Publikováno v:
Techniques de l'Ingenieur, TIP402WEB(h5040). Techniques de l'ingénieur
L’intelligence artificielle permet aujourd’hui de résoudre des problèmes de plus en plus complexes mais les algorithmes utilisés nécessitent des ressources de calcul qui consomment beaucoup d’énergie notamment pendant la phase d’apprenti
Publikováno v:
2022 IEEE International Conference on Metrology for Extended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE).
Publikováno v:
Proceedings of the International Conference on Neuromorphic Systems 2022.
Publikováno v:
NICE 2022-9th Neuro-Inspired Computational Elements Workshop
NICE 2022-9th Neuro-Inspired Computational Elements Workshop, Mar 2022, New York (Virtual), United States. pp.13-21, ⟨10.1145/3517343.3517348⟩
Neuro-Inspired Computational Elements Conference
NICE 2022-9th Neuro-Inspired Computational Elements Workshop, Mar 2022, New York (Virtual), United States. pp.13-21, ⟨10.1145/3517343.3517348⟩
Neuro-Inspired Computational Elements Conference
International audience; The increasing amount of data to be processed on edge devices, such as cameras, has motivated Artificial Intelligence (AI) integration at the edge. Typical image processing methods performed at the edge, such as feature extrac
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::709f9a4f758c2990b42f806880327a53
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03586865/document
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03586865/document
Oscillatory Neural Network (ONN) is an emerging neuromorphic architecture composed of oscillators that implement neurons and coupled by synapses. ONNs exhibit rich dynamics and associative properties, which can be used to solve problems in the analog
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4ca9befe9879bcf3fa3c1a8f3ed6c1d2
https://doi.org/10.36227/techrxiv.19248446
https://doi.org/10.36227/techrxiv.19248446