Zobrazeno 1 - 10
of 53
pro vyhledávání: '"Madden, James J."'
A join-semilattice $L$ is said to be conjunctive if it has a top element $1$ and it satisfies the following first-order condition: for any two distinct $a,b\in L$, there is $c\in L$ such that either $a\vee c\not=1=b\vee c$ or $a\vee c=1\not=b\vee c$.
Externí odkaz:
http://arxiv.org/abs/2006.03705
Autor:
Madden, James J.
Let $N(n,r,k)$ denote the number of binary words of length $n$ that begin with $0$ and contain exactly $k$ runs (i.e., maximal subwords of identical consecutive symbols) of length $r$. We show that the generating function for the sequence $N(n,r,0)$,
Externí odkaz:
http://arxiv.org/abs/1707.04351
Autor:
Madden, James J.
We show that if the neighbor complex, as defined by H.~Scarf, of an infinite subset of $\Z^n$ has finite dimension, then each vertex has finitely many neighbors.
Comment: 4 pages
Comment: 4 pages
Externí odkaz:
http://arxiv.org/abs/1703.09331
Autor:
Madden, James J., McGuire, Trevor
The present paper is motivated by the need to generalize the construction of the Scarf complex in order to give combinatorial resolutions of a much broader class of modules than just the monomial ideals. For any subset $A\subseteq \mathbb{R}^n$, let
Externí odkaz:
http://arxiv.org/abs/1511.08224
Autor:
Madden, James J., Mugochi, Martin
Publikováno v:
In Topology and its Applications 1 June 2019 259:275-282
Publikováno v:
Mathematics of Computation, 2003 Apr 01. 72(242), 975-1002.
Externí odkaz:
https://www.jstor.org/stable/4099944
Autor:
Madden, James J.
Publikováno v:
In Topology and its Applications 2011 158(14):1902-1908
Autor:
Madden, James J.
Publikováno v:
In Topology and its Applications 2011 158(14):1768-1773
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Madden, James J.
Publikováno v:
Transactions of the American Mathematical Society, 1992 May 01. 331(1), 265-279.
Externí odkaz:
https://www.jstor.org/stable/2154008