Zobrazeno 1 - 10
of 31
pro vyhledávání: '"Machura Michał"'
Publikováno v:
Open Mathematics, Vol 12, Iss 8, Pp 1239-1248 (2014)
Externí odkaz:
https://doaj.org/article/3c3902e1ac0548449a59e9afa06dabe1
Autor:
Machura, Michał
Publikováno v:
Poradnik Językowy / The Linguistic Guide. (01):34-42
Externí odkaz:
https://www.ceeol.com/search/article-detail?id=933583
Autor:
MACHURA, MICHAŁ
Publikováno v:
Język Polski; sep2024, Vol. 104 Issue 3, p27-38, 12p
Autor:
Machura, Michał, Starosolski, Andrzej
Publikováno v:
In Topology and its Applications 1 August 2020 281
Publikováno v:
Fundamenta Mathematicae 234 (2016), 15-40
The \emph{linear refinement number} $\mathfrak{lr}$ is the minimal cardinality of a centered family in $[\omega]^\omega$ such that no linearly ordered set in $([\omega]^\omega,\subseteq^*)$ refines this family. The \emph{linear excluded middle number
Externí odkaz:
http://arxiv.org/abs/1404.2239
Publikováno v:
Math. Bull. Shevchenko Sci. Soc. 11 (2014), 21-32
In this note we collect some known information and prove new results about the small uncountable cardinal $\mathfrak q_0$. The cardinal $\mathfrak q_0$ is defined as the smallest cardinality $|A|$ of a subset $A\subset \mathbb R$ which is not a $Q$-s
Externí odkaz:
http://arxiv.org/abs/1306.0204
Autor:
Machura, Michał, Starosolski, Andrzej
Under MA we prove that for the ideal $\cal I$ of thin sets on $\omega$ and for any ordinal $\gamma \leq \omega_1$ there is an ${\cal I}$-ultrafilter (in the sense of Baumgartner), which belongs to the class ${\cal P}_{\gamma}$ of P-hierarchy of ultra
Externí odkaz:
http://arxiv.org/abs/1201.1725
Autor:
Machura, Michał, Starosolski, Andrzej
Under CH we prove that for any tall ideal $\cal I$ on $\omega$ and for any ordinal $\gamma \leq \omega_1$ there is an ${\cal I}$-ultrafilter (in the sense of Baumgartner), which belongs to the class ${\cal P}_{\gamma}$ of P-hierarchy of ultrafilters.
Externí odkaz:
http://arxiv.org/abs/1108.1818
Autor:
Machura, Michał, Osiak, Katarzyna
In the paper an answer to a problem "When different orders of R(X) (where R is a real closed field) lead to the same real place ?" is given. We use this result to show that the space of $\mathbb R$-places of the field $\textbf{R}(Y)$ (where \textbf{R
Externí odkaz:
http://arxiv.org/abs/0803.0676
Publikováno v:
Transactions of the American Mathematical Society 362 (2010), 1751-1764
Using the Continuum Hyporthesis, we prove that there is a Menger-bounded (also called o-bounded) subgroup of the Baer-Specker group Z^N, whose square is not Menger-bounded. This settles a major open problem concerning boundedness notions for groups,
Externí odkaz:
http://arxiv.org/abs/math/0611353