Zobrazeno 1 - 10
of 15
pro vyhledávání: '"Machiko Tateishi"'
Autor:
Hiroyuki Uetani, Takeshi Nakaura, Mika Kitajima, Kosuke Morita, Kentaro Haraoka, Naoki Shinojima, Machiko Tateishi, Taihei Inoue, Akira Sasao, Akitake Mukasa, Minako Azuma, Osamu Ikeda, Yasuyuki Yamashita, Toshinori Hirai
Publikováno v:
European radiology. 32(7)
This study aimed to evaluate the efficacy of a combined wavelet and deep-learning reconstruction (DLR) method for under-sampled pituitary MRI.This retrospective study included 28 consecutive patients who underwent under-sampled pituitary T2-weighted
Autor:
Osamu Ikeda, Tadashi Hamasaki, Seitaro Oda, Machiko Tateishi, Kosuke Morita, Mika Kitajima, Yasuyuki Yamashita, Akira Sasao, Takeshi Nakaura, Yamashita Yuichi, Hiroyuki Uetani
Publikováno v:
Neuroradiology. 63(1)
Deep learning-based reconstruction (DLR) has been developed to reduce image noise and increase the signal-to-noise ratio (SNR). We aimed to evaluate the efficacy of DLR for high spatial resolution (HR)-MR cisternography. This retrospective study incl
Autor:
Nan Kurehana, Tetsuya Yoneda, Toshinori Hirai, Mika Kitajima, Mamoru Hashimoto, Yasuyuki Yamashita, Machiko Tateishi, Ryuji Fukuhara, Hiroyuki Uetani, Minako Azuma
Publikováno v:
Magnetic Resonance in Medical Sciences
Purpose To test the feasibility of the phase difference enhanced (PADRE) imaging for differentiation between Alzheimer disease (AD) patients and control subjects on 3T MR imaging. Materials and methods Fifteen patients with AD and 10 age-matched cont
Autor:
Yamashita Yuichi, Kosuke Morita, Mika Kitajima, Hiroyuki Uetani, Kenzo Isogawa, Kensuke Shinoda, Masafumi Kidoh, Yasuyuki Yamashita, Masahito Nambu, Takeshi Nakaura, Machiko Tateishi
Publikováno v:
Magnetic Resonance in Medical Sciences
Purpose: To test whether our proposed denoising approach with deep learning-based reconstruction (dDLR) can effectively denoise brain MR images. Methods: In an initial experimental study, we obtained brain images from five volunteers and added differ
Autor:
Yoshihito Kadota, Mika Kitajima, Shigetoshi Yano, Shinichiro Nishimura, Keishi Makino, Machiko Tateishi, Minako Azuma, Toshinori Hirai, Hideo Nakamura, Yasuyuki Yamashita
Publikováno v:
Magnetic Resonance in Medical Sciences
Purpose: We aimed to determine whether 3T diffusion-weighted imaging (DWI) has an additive value relative to contrast-enhanced MR imaging for the detection of disseminated lesions in patients with primary malignant brain tumors. Methods: We included
Autor:
Shinichiro Nishimura, Toshinori Hirai, Minako Azuma, Eri Hayashida, Yasuhiko Iryo, Yasuyuki Yamashita, Machiko Tateishi, Masanobu Nakamura, Mika Kitajima
Publikováno v:
Magnetic Resonance in Medical Sciences
Contrast inherent inflow-enhanced multi-phase angiography combining multiple-phase flow-alternating inversion-recovery (CINEMA-FAIR) is an arterial-spin-labeling-based four-dimensional magnetic resonance angiography (4D-MRA) technique. Two neuroradio
Autor:
Akitake Mukasa, Takeshi Nakaura, Machiko Tateishi, Masataka Nakagawa, Yasuyuki Yamashita, Hiroyuki Uetani, Mika Kitajima, Jun-ichiro Kuroda, Taihei Inoue
Publikováno v:
Journal of the Neurological Sciences. 410:116514
Purpose To evaluate the performance of a machine learning method based on texture parameters in conventional magnetic resonance imaging (MRI) in differentiating glioblastoma (GB) from brain metastases (METs). Materials and methods In this retrospecti
Autor:
Yuichiro Muto, Yasuyuki Yamashita, Takeshi Nakaura, Hiroyuki Uetani, Yohei Kuroki, Katsuki Hirai, Machiko Tateishi, Mika Kitajima, Takeshi Sugahara
Publikováno v:
Journal of the Neurological Sciences. 408:116558
Purpose Acute encephalopathy with biphasic seizures and late reduced diffusion (AESD) is the most common encephalopathy subtype in Japanese children. Few case reports have shown perfusion abnormality on arterial spin labeling (ASL) in patients with A
Autor:
Masataka Nakagawa, Toshinori Hirai, Yasuyuki Yamashita, Daisuke Utsunomiya, Keishi Makino, Akitake Mukasa, Hideo Nakamura, Hiroyuki Uetani, Mika Kitajima, Seitaro Oda, Tomohiro Namimoto, Takeshi Nakaura, Machiko Tateishi
Publikováno v:
European journal of radiology. 108
Purpose To evaluate the performance of a machine learning method based on texture features in multi-parametric magnetic resonance imaging (MRI) to differentiate a glioblastoma multiforme (GBM) from a primary cerebral nervous system lymphoma (PCNSL).
Autor:
Joji Urata, Yasuyuki Yamashita, Shota Tanoue, Akinori Tsuji, Seitaro Oda, Morikatsu Yoshida, Eri Yoshida, Mitsuhiro Furusawa, Daisuke Utsunomiya, Masafumi Kidoh, Machiko Tateishi, Takeshi Nakaura, Yasunori Nagayama
OBJECTIVE: To evaluate the image quality, radiation dose, and renal safety of contrast medium (CM)-reduced abdominal–pelvic CT combining 80-kVp and sinogram-affirmed iterative reconstruction (SAFIRE) in patients with renal dysfunction for oncologic
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7d9be40d274c4b66e005e5878665eb39
https://europepmc.org/articles/PMC6190770/
https://europepmc.org/articles/PMC6190770/