Zobrazeno 1 - 10
of 12
pro vyhledávání: '"Machado Manhães de Castro, Pedro"'
Autor:
Cristina de Sousa Pedrosa, Barbara, Machado Manhães de Castro, Pedro, Santos, Luiza Vieira Santos e, Lima de Andrade, Danielly, Florencio Vilaça, Adriano, Pinheiro Júnior, José Eudes Gomes, Paula de Lima Ferreira, Ana, Lins, Esdras Marques, Maia, Juliana Netto, do Amparo Andrade, Maria, de Castro, Célia Maria Machado Barbosa
Publikováno v:
Physiotherapy Theory & Practice; May2024, Vol. 40 Issue 5, p900-908, 9p
Publikováno v:
[Research Report] RR-8947, Inria. 2016
Let $X_n$ be a $d$ dimensional Poisson point process of intensity $n$.We prove that the expected length of the Voronoi path between twopoints at distance 1 in the Delaunay triangulation associated with $X_n$ is $\sqrt{\frac{2d}{\pi}}+O(d^{-\frac{1}{2
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::b72428b7209159950176bd1187fe1627
https://inria.hal.science/hal-01353735/document
https://inria.hal.science/hal-01353735/document
Publikováno v:
2011 Proceedings of the Thirteenth Workshop on Algorithm Engineering and Experiments (ALENEX) ISBN: 9781611972917
Proceedings of the 13th Workshop on Algorithm Engineering and Experiments
Proceedings of the 13th Workshop on Algorithm Engineering and Experiments, 2011, San Francisco, United States. pp.127-138
Proceedings of the 13th Workshop on Algorithm Engineering and Experiments
Proceedings of the 13th Workshop on Algorithm Engineering and Experiments, 2011, San Francisco, United States. pp.127-138
International audience; We analyze, implement, and evaluate a distribution- sensitive point location algorithm based on the classical Jump & Walk, called Keep, Jump, & Walk. For a batch of query points, the main idea is to use previous queries to imp
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c1f4bbf08cacb0468d0b817e29201c6f
https://doi.org/10.1137/1.9781611972917.13
https://doi.org/10.1137/1.9781611972917.13
Publikováno v:
Operations Research Letters
Operations Research Letters, 2011, 39, pp.44-48. ⟨10.1016/j.orl.2010.10.005⟩
Operations Research Letters, 2011, 39, pp.44-48. ⟨10.1016/j.orl.2010.10.005⟩
International audience; We show that, for an Euclidean minimal k-insertion tree (EMITk), if the weight w of an edge e is its Euclidean length to the power of α, the sum on all edges of EMITk of their weights w(e) is O(n * k−α/d) in the worst case
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od_______165::ec3467f07e7484c5fadf90e8d46d1225
https://inria.hal.science/hal-00991081
https://inria.hal.science/hal-00991081
Publikováno v:
[Research Report] RR-7179, INRIA. 2010
This paper extends the result of Steele [6,5] on the worst-case length of the Euclidean minimum spanning tree EMST and the Euclidean minimum insertion tree EMIT of a set of n points S contained in Rd. More precisely, we show that, if the weight w of
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::bf6c802986beaa168d76c8cb081ef6d2
https://inria.hal.science/inria-00448335/document
https://inria.hal.science/inria-00448335/document
Publikováno v:
[Research Report] RR-7322, Inria. 2010, pp.15
Point location in a triangulation is one of the most studied problems in computational geometry. For a single query, stochastic walk is a good practical strategy. In this work, we propose two approaches improving the performance of the stochastic wal
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::7325ad40c2eedcdb4cf9a601aa1f7827
https://hal.inria.fr/inria-00493046
https://hal.inria.fr/inria-00493046
Publikováno v:
European Workshop on Computational Geometry
European Workshop on Computational Geometry, 2009, Bruxelles, Belgium
European Workshop on Computational Geometry, 2009, Bruxelles, Belgium
International audience; This paper considers the problem of updating efficiently a Delaunay triangulation when vertices are moving under small perturbations. Its main contribution is a set of algorithms based on the concept of vertex tolerance. Exper
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::c9b4edbf93e7e47982cc92a0af32420d
https://inria.hal.science/inria-00413351/document
https://inria.hal.science/inria-00413351/document
Autor:
Caroli, Manuel, Machado Manhães De Castro, Pedro, Loriot, Sebastien, Rouiller, Olivier, Teillaud, Monique, Wormser, Camille
Publikováno v:
[Research Report] RR-7004, INRIA. 2009
We propose two approaches for computing the Delaunay triangulation of points on a sphere, or of rounded points close to a sphere, both based on the classic incremental algorithm initially designed for the plane. The space of circles gives the mathema
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::a845431ceae0e38fad65a56a64e92090
https://hal.inria.fr/inria-00405478v4/file/RR-7004.pdf
https://hal.inria.fr/inria-00405478v4/file/RR-7004.pdf
Publikováno v:
[Research Report] RR-6665, INRIA. 2008, pp.12
This paper considers the problem of updating efficiently a two-dimensional Delaunay triangulation when vertices are moving. We investigate the three current state-of-the-art approaches to solve this problem: --1-- the use of kinetic data structures,
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::f9424ecd32ea62d42e5b9d35fe5a08aa
https://hal.inria.fr/inria-00325816/document
https://hal.inria.fr/inria-00325816/document
Publikováno v:
[Research Report] RR-6750, INRIA. 2008
This paper considers the problem of updating efficiently a Delaunay triangulation when vertices are moving under small perturbations. Its main contribution is a set of algorithms based on the concept of vertex tolerance. Experiment shows that it is a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::960ca7f8e5ffcb3e5172aa3f39094a37
https://inria.hal.science/inria-00344053/file/RR-6750.pdf
https://inria.hal.science/inria-00344053/file/RR-6750.pdf