Zobrazeno 1 - 10
of 16 934
pro vyhledávání: '"Maass, P."'
Autor:
Herrera, Fernando
We establish the integral kernel associated with the Koecher-Maass series of degree three twisted by an Eisenstein series. We prove that such a kernel admits an analytic continuation and determine its functional equations. We find a second representa
Externí odkaz:
http://arxiv.org/abs/2412.05129
Autor:
Sun, Qingfeng, Wang, Hui
In this paper, we establish an asymptotic formula for the twisted second moment of $L$-functions associated with Hecke--Maass cusp forms for $\rm SL(3,\mathbb{Z})$, and further deduce a weighted zero-density estimate for these $L$-functions in the sp
Externí odkaz:
http://arxiv.org/abs/2412.02416
We study the holomorphic projection of mixed mock modular forms involving sesquiharmonic Maass forms. As a special case, we numerically express the holomorphic projection of a function involving real quadratic class numbers multiplied by a certain th
Externí odkaz:
http://arxiv.org/abs/2411.05972
Restrictions of Maass forms on $\mathrm{SL}(2,\mathbb{C})$ to hyperbolic surfaces and geodesic tubes
Autor:
Hou, Jiaqi
Let $\psi$ be an $L^2$-normalized Hecke-Maass form with a large spectral parameter $\lambda>0$ on a compact arithmetic congruence hyperbolic 3-manifold $X=\Gamma\backslash\mathrm{SL}(2,\mathbb{C})/\mathrm{SU}(2)$, and let $Y$ be a totally geodesic su
Externí odkaz:
http://arxiv.org/abs/2410.17164
Autor:
Guo, Chengliang
Let $F(z), G(z)$ be Hecke-Maass cusp forms or Eisenstein series and $\psi$ is a smooth compactly supported function on X = SL(2,Z)\H. In this paper, we are interested in the asymptotic behavior of joint moment like $\int_{X}\psi(z) F(z)^{a_1}G(z)^{a_
Externí odkaz:
http://arxiv.org/abs/2410.04448
For vector-valued Maass cusp forms for~$SL_2(\mathbb{Z})$ with real weight~$k\in\mathbb{R}$ and spectral parameter $s\in\mathbb{C}$, $\mathrm{Re} s\in (0,1)$, $s\not\equiv \pm k/2$ mod $1$, we propose a notion of vector-valued period functions, and w
Externí odkaz:
http://arxiv.org/abs/2408.03104
Autor:
Balkanova, Olga, Frolenkov, Dmitry
Recently R. Khan and M. Young proved a mean Lindel\"{o}f estimate for the second moment of Maass form symmetric-square $L$-functions $L(\text{sym}^2 u_{j},1/2+it)$ on the short interval of length $G\gg |t_j|^{1+\epsilon}/t^{2/3}$, where $t_j$ is a sp
Externí odkaz:
http://arxiv.org/abs/2408.06735
Autor:
Frolenkov, Dmitry
Recently R.Khan and M.Young proved a mean Lindel\"{o}f estimate on the second moment of central values of Maass form symmetric-square $L$-function on the interval $T<|t_j|
Externí odkaz:
http://arxiv.org/abs/2408.05929
We investigate the properties of Hecke operator for sesquiharmonic Maass forms. We begin by proving Hecke equivariance of the divisor lifting with respect to sesquiharmonic Mass functions, which maps an integral weight meromorphic modular form to the
Externí odkaz:
http://arxiv.org/abs/2407.21447
We prove the existence of murmurations in the family of Maass forms of weight 0 and level 1 with their Laplace eigenvalue parameter going to infinity (i.e., correlations between the parity and Hecke eigenvalues at primes growing in proportion to the
Externí odkaz:
http://arxiv.org/abs/2409.00765