Zobrazeno 1 - 10
of 35
pro vyhledávání: '"Maarefparvar, Abbas"'
In this paper, we present an improved version of the digital signature scheme proposed by Sharafi and Daghigh based on Module-LWE and Module-SIS problems. Our proposed signature scheme has a notably higher security level and smaller decoding failure
Externí odkaz:
http://arxiv.org/abs/2409.02222
Autor:
Maarefparvar, Abbas
We prove two conjectures proposed by Chabert and Halberstadt concerning P\'olya groups of $S_4$-fields and $D_4$-fields. More generally, the latter will be proved for $D_n$-fields with $n \geq 4$ an even integer. Further, generalizing a result of Zan
Externí odkaz:
http://arxiv.org/abs/2408.09019
Autor:
Shahoseini, Ehsan, Maarefparvar, Abbas
Let $K/F$ be a finite extension of number fields and $S$ be a finite set of primes of $F$, including all the archimedean ones. In this paper, using some results of Gonz\'alez-Avil\'es \cite{Aviles}, we generalize the notions of the relative P\'olya g
Externí odkaz:
http://arxiv.org/abs/2312.09362
Autor:
Maarefparvar, Abbas
For $K/F$ a finite Galois extension of number fields, the relative P\'olya group $\Po(K/F)$ is the subgroup of the ideal class group of $K$ generated by all the strongly ambiguous ideal classes in $K/F$. The notion of Ostrowski quotient $\Ost(K/F)$,
Externí odkaz:
http://arxiv.org/abs/2202.04922
Publikováno v:
Pacific J. Math. 321 (2022) 415-429
For $L/K$ a finite Galois extension of number fields, the relative P\'olya group $\Po(L/K)$ coincides with the group of strongly ambiguous ideal classes in $L/K$. In this paper, using a well known exact sequence related to $\Po(L/K)$, in the works of
Externí odkaz:
http://arxiv.org/abs/2111.00442
Autor:
Maarefparvar, Abbas
For a Galois number field $K$, P\'olya-Ostrowski group of $K$ is the subgroup of the ideal class group of $K$ generated by all strongly ambiguous ideal classes. $K$ is called a P\'olya field, whenever its P\'olya group is trivial. In this paper, usin
Externí odkaz:
http://arxiv.org/abs/2108.01904
Autor:
Sharafi, Javad, Maarefparvar, Abbas
Recently, the data-selective adaptive Volterra filters have been proposed; however, up to now, there are not any theoretical analyses on its behavior rather than numerical simulations. Therefore, in this paper, we analyze the robustness (in the sense
Externí odkaz:
http://arxiv.org/abs/2003.11514
Autor:
Rajaei, Ali, Maarefparvar, Abbas
We define the relative Polya group for a finite extension of number fields and prove triviality of the relative Polya group for the Hilbert class field. Then we generalize our previous results on Polya S3-extensions of Q to some dihedral extensions o
Externí odkaz:
http://arxiv.org/abs/1807.04744
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Maarefparvar, Abbas
Publikováno v:
In Journal of Number Theory November 2021 228:1-7