Zobrazeno 1 - 10
of 36
pro vyhledávání: '"Ma, Yulai"'
An $r$-regular graph is an $r$-graph, if every odd set of vertices is connected to its complement by at least $r$ edges. Seymour [On multicolourings of cubic graphs, and conjectures of Fulkerson and Tutte.~\emph{Proc.~London Math.~Soc.}~(3), 38(3): 4
Externí odkaz:
http://arxiv.org/abs/2411.01753
For any positive integer $k$, the reconfiguration graph for all $k$-colorings of a graph $G$, denoted by $\mathcal{R}_k(G)$, is the graph where vertices represent the $k$-colorings of $G$, and two $k$-colorings are joined by an edge if they differ in
Externí odkaz:
http://arxiv.org/abs/2409.19368
An $r$-regular graph is an $r$-graph, if every odd set of vertices is connected to its complement by at least $r$ edges. Let $G$ and $H$ be $r$-graphs. An $H$-coloring of $G$ is a mapping $f\colon E(G) \to E(H)$ such that each $r$ adjacent edges of $
Externí odkaz:
http://arxiv.org/abs/2305.08619
For $0 \leq t \leq r$ let $m(t,r)$ be the maximum number $s$ such that every $t$-edge-connected $r$-graph has $s$ pairwise disjoint perfect matchings. There are only a few values of $m(t,r)$ known, for instance $m(3,3)=m(4,r)=1$, and $m(t,r) \leq r-2
Externí odkaz:
http://arxiv.org/abs/2208.14835
Publikováno v:
SIAM J. Discrete Math., 37 (2023), 1548-1565
Thomassen [Problem 1 in Factorizing regular graphs, J. Combin. Theory Ser. B, 141 (2020), 343-351] asked whether every $r$-edge-connected $r$-regular graph of even order has $r-2$ pairwise disjoint perfect matchings. We show that this is not the case
Externí odkaz:
http://arxiv.org/abs/2206.10975
A bridgeless graph $G$ is called $3$-flow-critical if it does not admit a nowhere-zero $3$-flow, but $G/e$ has for any $e\in E(G)$. Tutte's $3$-flow conjecture can be equivalently stated as that every $3$-flow-critical graph contains a vertex of degr
Externí odkaz:
http://arxiv.org/abs/2003.09162
An $r$-dynamic $k$-coloring of a graph $G$ is a proper $k$-coloring such that for any vertex $v$, there are at least $\min\{r, deg_G(v) \}$ distinct colors in $N_G(v)$. The $r$-dynamic chromatic number $\chi_r^d(G)$ of a graph $G$ is the least $k$ su
Externí odkaz:
http://arxiv.org/abs/1909.04533
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Journal of Combinatorial Theory, Series B March 2022 153:61-80
Publikováno v:
In European Journal of Combinatorics February 2022 100