Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Ma, Ruinan"'
Adversarial transferability enables black-box attacks on unknown victim deep neural networks (DNNs), rendering attacks viable in real-world scenarios. Current transferable attacks create adversarial perturbation over the entire image, resulting in ex
Externí odkaz:
http://arxiv.org/abs/2312.06199
Deep learning techniques have implemented many unconditional image generation (UIG) models, such as GAN, Diffusion model, etc. The extremely realistic images (also known as AI-Generated Content, AIGC for short) produced by these models bring urgent n
Externí odkaz:
http://arxiv.org/abs/2310.09479
Electronic countermeasures involving radar signals are an important aspect of modern warfare. Traditional electronic countermeasures techniques typically add large-scale interference signals to ensure interference effects, which can lead to attacks b
Externí odkaz:
http://arxiv.org/abs/2310.08292
Autor:
Xin, Jijun, Zhang, Hengcheng, Lyu, Bingkun, Liang, Panyi, Boubeche, Mebrouka, Shen, Fuzhi, Wang, Wei, Sun, Wentao, Shi, Li, Ma, Ruinan, Shan, Xinran, Huang, Chuanjun, Li, Laifeng
Publikováno v:
In Journal of Materials Science & Technology 1 August 2024 189:191-202
Autor:
Li, Zhizhang, Zhang, Dong, Song, Zheng, Cui, Xiankai, Liu, Lingyun, Ding, Ying, Xue, Jie, Zhang, Xiaoguang, Ma, Ruinan, Zhu, Xiaoqiong, Yue, Yunhua
Publikováno v:
In Journal of Clinical Neuroscience January 2023 107:138-143
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
应用数学和力学. 40:97-107