Zobrazeno 1 - 10
of 23
pro vyhledávání: '"MYKYTYUK, YA. V."'
Autor:
Mykytyuk, Ya. V., Puyda, D. V.
Publikováno v:
Mat. Stud. 40 (2013) 165-171
We prove the Bari-Markus property for spectral projectors of non-self-adjoint Dirac operators on a finite interval with square-integrable matrix-valued potentials and some separated boundary conditions.
Comment: 7 pages
Comment: 7 pages
Externí odkaz:
http://arxiv.org/abs/1410.3620
Autor:
Mykytyuk, Ya. V., Puyda, D. V.
We prove that there is a homeomorphism between the space of accelerants and the space of potentials of non-self-adjoint Dirac operators on a finite interval.
Comment: to appear in Methods of Functional Analysis and Topology 20 (2014), no. 4; 18
Comment: to appear in Methods of Functional Analysis and Topology 20 (2014), no. 4; 18
Externí odkaz:
http://arxiv.org/abs/1410.3210
Autor:
Mykytyuk, Ya. V., Puyda, D. V.
Publikováno v:
J. Math. Anal. Appl. 386 (2012) 177-194
We consider the direct and inverse spectral problems for Dirac operators that are generated by the differential expressions $$ \mathfrak t_q:=\frac{1}{i}[I&0 0&-I]\frac{d}{dx}+[0&q q^*&0] $$ and some separated boundary conditions. Here $q$ is an $r\t
Externí odkaz:
http://arxiv.org/abs/1101.2302
This is the second in a series of papers on scattering theory for one-dimensional Schr\"odinger operators with Miura potentials admitting a Riccati representation of the form $q=u'+u^2$ for some $u\in L^2(R)$. We consider potentials for which there e
Externí odkaz:
http://arxiv.org/abs/0910.0639
This is the first in a series of papers on scattering theory for one-dimensional Schr\"odinger operators with highly singular potentials $q\in H^{-1}(R)$. In this paper, we study Miura potentials $q$ associated to positive Schr\"odinger operators tha
Externí odkaz:
http://arxiv.org/abs/0910.0636
Autor:
Mykytyuk, Ya. V., Trush, N. S.
We give a complete description of the set of spectral data (eigenvalues and specially introduced norming constants) for Sturm--Liouville operators on the interval $[0,1]$ with matrix-valued potentials in the Sobolev space $W_2^{-1}$ and suggest an al
Externí odkaz:
http://arxiv.org/abs/0907.5217
Autor:
MYKYTYUK, YA. V., SUSHCHYK, N. S.
Publikováno v:
Matematychni Studii; 2024, Vol. 61 Issue 2, p176-187, 12p
Autor:
Hryniv, R. O., Mykytyuk, Ya. V.
Publikováno v:
Proceedings of the Edinburgh Mathematical Society 49 (2006), 309--329
We solve the inverse spectral problems for the class of Sturm--Liouville operators with singular real-valued potentials from the Sobolev space W^{s-1}_2(0,1), s\in[0,1]. The potential is recovered from two spectra or from the spectrum and norming con
Externí odkaz:
http://arxiv.org/abs/math/0406238
Autor:
Hryniv, R. O., Mykytyuk, Ya. V.
We solve the inverse spectral problem of recovering the singular potentials $q\in W^{-1}_{2}(0,1)$ of Sturm-Liouville operators by two spectra. The reconstruction algorithm is presented and necessary and sufficient conditions on two sequences to be s
Externí odkaz:
http://arxiv.org/abs/math/0301193
Autor:
Hryniv, R. O., Mykytyuk, Ya. V.
Publikováno v:
Inverse Problems 19 (2003), no. 3, 665-684
The inverse spectral problem is solved for the class of Sturm-Liouville operators with singular real-valued potentials from the space $W^{-1}_2(0,1)$. The potential is recovered via the eigenvalues and the corresponding norming constants. The reconst
Externí odkaz:
http://arxiv.org/abs/math/0211247