Zobrazeno 1 - 10
of 202
pro vyhledávání: '"MURRAY, WILL"'
Autor:
Murray, Will1,2 (AUTHOR) balanayj@ecu.edu, Wu, Qiang1 (AUTHOR) wuq@ecu.edu, Balanay, Jo Anne G.2 (AUTHOR), Sousan, Sinan1,3,4 (AUTHOR) sousans18@ecu.edu
Publikováno v:
Sensors (14248220). Jul2024, Vol. 24 Issue 14, p4520. 14p.
Autor:
Murray, Will
Publikováno v:
Lovecraft Annual, 2020 Jan 01(14), 60-76.
Externí odkaz:
https://www.jstor.org/stable/26939810
Publikováno v:
Pest Management Science; Jul2024, Vol. 80 Issue 7, p3140-3148, 9p
Autor:
Lam, T. Y., Murray, Will
Publikováno v:
Bull. Hong Kong Math. Soc. 1 (1997), no. 1, 61-65
For any ring \(R\), some characterizations are obtained for unit regular elements in a corner ring \(eRe\) in terms of unit regular elements in \(R\). \noindent {\bf Key Words}: von Neumann regular rings, unit regular rings, corner rings, idempotents
Externí odkaz:
http://arxiv.org/abs/1402.6271
Autor:
Murray, Will
Publikováno v:
Journal of Algebra, 269(2):599-609, 2003
We show that the Nakayama automorphism of a Frobenius algebra $R$ over a field $k$ is independent of the field (Theorem 4). Consequently, the $k$-dual functor on left $R$-modules and the bimodule isomorphism type of the $k$-dual of $R$, and hence the
Externí odkaz:
http://arxiv.org/abs/1402.4559
Autor:
Murray, Will
Publikováno v:
Journal of Algebra 293 (2005), no. 1, 89-101
We analyze the homothety types of associative bilinear forms that can occur on a Hopf algebra or on a local Frobenius \(k\)-algebra \(R\) with residue field \(k\). If \(R\) is symmetric, then there exists a unique form on \(R\) up to homothety iff \(
Externí odkaz:
http://arxiv.org/abs/1401.6486
Autor:
Mena, Robert, Murray, Will
Publikováno v:
Mathematics Magazine Vol. 84, No. 1 (February 2011), pp. 3-15
Consider a system of \(n\) players in which each initially starts on a different team. At each time step, we select an individual winner and an individual loser randomly and the loser joins the winner's team. The resulting Markov chain and stochastic
Externí odkaz:
http://arxiv.org/abs/1401.3022
Autor:
Murray, Will
Publikováno v:
Mathematics Magazine 85 (2012), no. 5, 376-383
We introduce the M\"obius polynomial $ M_n(x) = \sum_{d|n} \mu\left( \frac nd \right) x^d $, which gives the number of aperiodic bracelets of length $n$ with $x$ possible types of gems, and therefore satisfies $M_n(x) \equiv 0$ (mod $n$) for all $x \
Externí odkaz:
http://arxiv.org/abs/1312.3848