Zobrazeno 1 - 2
of 2
pro vyhledávání: '"MSC : primary, 34C07"'
Publikováno v:
Annales de l'Institut Henri Poincaré (C) Non Linear Analysis
Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, Elsevier, 2019, 36 (7), pp.1941-1957. ⟨10.1016/j.anihpc.2019.07.003⟩
Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, Elsevier, 2019, 36 (7), pp.1941-1957. ⟨10.1016/j.anihpc.2019.07.003⟩
In this paper we study polynomial Hamiltonian systems d F = 0 in the plane and their small perturbations: d F + ϵ ω = 0 . The first nonzero Melnikov function M μ = M μ ( F , γ , ω ) of the Poincare map along a loop γ of d F = 0 is given by an
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9e877f9a2146712c96356e5d53ed73e3
https://hal-univ-bourgogne.archives-ouvertes.fr/hal-02288935
https://hal-univ-bourgogne.archives-ouvertes.fr/hal-02288935
Publikováno v:
Moscow Mathematical Journal
Moscow Mathematical Journal, Independent University of Moscow 2018, 18 (2), pp.367-386. ⟨10.17323/1609-4514-2018-18-2-367-386⟩
Moscow Mathematical Journal, Independent University of Moscow 2018, 18 (2), pp.367-386. ⟨10.17323/1609-4514-2018-18-2-367-386⟩
International audience; We consider small polynomial deformations of integrable systems of the form $dF=0, F\in\mathbb{C}[x,y]$ and the first nonzero term $M_\mu$ of the displacement function $\Delta(t,\epsilon)=\sum_{i=\mu}M_i(t)\epsilon^i$ along a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8e01f26219d35989acd79556387492c2
https://hal.archives-ouvertes.fr/hal-01900091
https://hal.archives-ouvertes.fr/hal-01900091