Zobrazeno 1 - 10
of 243
pro vyhledávání: '"MORINI, MASSIMILIANO"'
We study the isoperimetric problem for capillary surfaces with a general contact angle $\theta \in (0, \pi)$, outside convex infinite cylinders with arbitrary two-dimensional convex section. We prove that the capillary energy of any surface supported
Externí odkaz:
http://arxiv.org/abs/2406.19011
We study the asymptotic behavior of the volume preserving mean curvature and the Mullins-Sekerka flat flow in three dimensional space. Motivated by this we establish a 3D sharp quantitative version of the Alexandrov inequality for $C^2$-regular sets
Externí odkaz:
http://arxiv.org/abs/2406.17691
We consider here a fully discrete variant of the implicit variational scheme for mean curvature flow [AlmTayWan,LucStu], in a setting where the flow is governed by a crystalline surface tension defined by the limit of pairwise interactions energy on
Externí odkaz:
http://arxiv.org/abs/2403.04725
A comparison theorem by Choe, Ghomi and Ritor\'e states that the exterior isoperimetric profile $I_\mathcal{C}$ of any convex body $\mathcal{C}$ in $\mathbb{R}^N$ lies above that of any half-space $H$. We characterize convex bodies such that $I_\math
Externí odkaz:
http://arxiv.org/abs/2310.13569
In this paper we introduce the notion of parabolic $\alpha$-Riesz flow, for $\alpha\in(0,d)$, extending the notion of $s$-fractional heat flows to negative values of the parameter $s=-\frac{\alpha}{2}$. Then, we determine the limit behaviour of these
Externí odkaz:
http://arxiv.org/abs/2306.09795