Zobrazeno 1 - 10
of 174
pro vyhledávání: '"MORIN, PEDRO"'
In this article we analyze the error produced by the removal of an arbitrary knot from a spline function. When a knot has multiplicity greater than one, this implies a reduction of its multiplicity by one unit. In particular, we deduce a very simple
Externí odkaz:
http://arxiv.org/abs/2309.03176
Publikováno v:
In Applied Mathematics and Computation 1 July 2024 472
We study approximation classes for adaptive time-stepping finite element methods for time-dependent Partial Differential Equations (PDE). We measure the approximation error in $L_2([0,T)\times\Omega)$ and consider the approximation with discontinuous
Externí odkaz:
http://arxiv.org/abs/2103.06088
Autor:
Bänsch, Eberhard, Morin, Pedro
We study the stationary version of a thermodynamically consistent variant of the Buongiorno model describing convective transport in nanofluids. Under some smallness assumptions it is proved that there exist regular solutions. Based on this regularit
Externí odkaz:
http://arxiv.org/abs/1912.04205
We analyze the existence of solutions to the stationary problem from a mathematical model for convective transport in nanofluids including thermophoretic effects that is very similar to the celebrated model of Buongiorno [6].
Externí odkaz:
http://arxiv.org/abs/1911.04958
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We introduce a framework for spline spaces of hierarchical type, based on a parent-children relation, which is very convenient for the analysis as well as the implementation of adaptive isogeometric methods. Such framework makes it simple to create h
Externí odkaz:
http://arxiv.org/abs/1808.02053
We introduce new results about the shape derivatives of scalar- and vector-valued functions, extending the results from (Dogan-Nochetto 2012) to more general surface energies. They consider surface energies defined as integrals over surfaces of funct
Externí odkaz:
http://arxiv.org/abs/1708.07440
We present a new AFEM for the Laplace-Beltrami operator with arbitrary polynomial degree on parametric surfaces, which are globally $W^1_\infty$ and piecewise in a suitable Besov class embedded in $C^{1,\alpha}$ with $\alpha \in (0,1]$. The idea is t
Externí odkaz:
http://arxiv.org/abs/1511.05019
We consider Poisson's equation with a finite number of weighted Dirac masses as a source term, together with its discretization by means of conforming finite elements. For the error in fractional Sobolev spaces, we propose residual-type a posteriori
Externí odkaz:
http://arxiv.org/abs/1507.08247