Zobrazeno 1 - 10
of 86
pro vyhledávání: '"MKRTCHYAN, A. L."'
Autor:
Avetisyan, M. Y., Mkrtchyan, R. L.
The partition function of refined Chern-Simons theory on 3d sphere for the exceptional $E_n$ gauge algebras is presented in terms of multiple sine functions. Gopakumar-Vafa (BPS) approximation is calculated and presented in the form of some refined t
Externí odkaz:
http://arxiv.org/abs/2304.05184
Autor:
Avetisyan, M. Y., Mkrtchyan, R. L.
Inspired by the two-parameter Macdonald-Cherednik deformation of the formulae for non simply laced simple Lie algebras, we propose a two-fold refinement of the partition function of the corresponding Chern-Simons theory on $S^3$. It is based on a two
Externí odkaz:
http://arxiv.org/abs/2302.14319
Autor:
Avetisyan, M. Y., Mkrtchyan, R. L.
We present the partition function of the refined Chern-Simons theory on $S^3$ with arbitrary A,B,C,D gauge algebra in terms of multiple sine functions. For B and C cases this representation is novel. It allows us to conjecture duality to some refined
Externí odkaz:
http://arxiv.org/abs/2205.12832
Autor:
Avetisyan, M. Y., Mkrtchyan, R. L.
We present a new expression for the partition function of refined Chern-Simons theory on $S^3$ with arbitrary gauge group, which is explicitly equal to $1$, when the coupling constant is zero. Using this form of partition function we show that the pr
Externí odkaz:
http://arxiv.org/abs/2107.08679
Autor:
Avetisyan, M. Y., Mkrtchyan, R. L.
The problem of uniqueness of universal formulae for (quantum) dimensions of simple Lie algebras is investigated. We present generic functions, which multiplied by a universal (quantum) dimension formula, preserve both its structure and its values at
Externí odkaz:
http://arxiv.org/abs/2101.10860
Autor:
Avetisyan, M. Y., Mkrtchyan, R. L.
In his study of finite (Vassiliev's) knot invariants,Vogel introduced the so-called universal parameters, belonging to the projective plane, which particularly parameterize the simple Lie algebras by the Vogel's table. Subsequently a number of quanti
Externí odkaz:
http://arxiv.org/abs/2101.08780
Autor:
Mkrtchyan, R. L.
We present the partition function of Chern-Simons theory with the exceptional gauge group on three-sphere in the form of a partition function of the refined closed topological string with relation $2\tau=g_s(1-b) $ between single K\"ahler parameter $
Externí odkaz:
http://arxiv.org/abs/2007.09346
Autor:
Avetisyan, M. Y., Mkrtchyan, R. L.
We present the universal, in Vogel's sense, expression for the quantum dimension of Cartan product of an arbitrary number of adjoint and $X_2$ representations of simple Lie algebras. The same formula mysteriously gives quantum dimensions of some othe
Externí odkaz:
http://arxiv.org/abs/1909.02076
Autor:
Avetisyan, M. Y., Mkrtchyan, R. L.
The antisymmetric square of the adjoint representation of any simple Lie algebra is equal to the sum of adjoint and $X_2$ representations. We present universal formulae for quantum dimensions of an arbitrary Cartan power of $X_2$. They are analyzed f
Externí odkaz:
http://arxiv.org/abs/1812.07914
Autor:
Mkrtchyan, R. L.
We calculate $q$-dimension of $k$-th Cartan power of fundamental representation $\Lambda_0$, corresponding to affine root of affine simply laced Kac-Moody algebras, and show that in the limit $q\rightarrow 1 $, and with natural renormalization, it is
Externí odkaz:
http://arxiv.org/abs/1709.03261