Zobrazeno 1 - 10
of 204
pro vyhledávání: '"MISRA, KAILASH C."'
Autor:
Dinkins, Erica S., Misra, Kailash C.
Let $\mathfrak{g}$ be an affine Lie algebra with index set $I = \{0, 1, 2, \cdots , n\}$ and $\mathfrak{g}^L$ be its Langlands dual. It is conjectured that for each Dynkin node $i \in I \setminus \{0\}$ the affine Lie algebra $\mathfrak{g}$ has a pos
Externí odkaz:
http://arxiv.org/abs/2404.06321
We consider reduced imaginary Verma modules for the untwisted quantum affine algebras $U_q(\hat{\g})$ and define a crystal-like base which we call imaginary crystal base using the Kashiwara algebra $\mathcal K_q$ constructed in earlier work by Ben Co
Externí odkaz:
http://arxiv.org/abs/2307.06491
Autor:
Jayne, Rebecca L., Misra, Kailash C.
Consider the affine Lie algebra $\hat{s\ell}(n)$ with null root $\delta$, weight lattice $P$ and set of dominant weights $P^+$. Let $V(k\Lambda_0), \, k \in \mathbb{Z}_{\geq 1}$ denote the integrable highest weight $\hat{s\ell}(n)$-module with level
Externí odkaz:
http://arxiv.org/abs/2208.07266
Publikováno v:
Algebra and Discrete Math. 34:2 (2022), 187-222
In this paper, we investigate $q$-Varchenko matrices for some hyperplane arrangements with symmetry in two and three dimensions, and prove that they have a Smith normal form over $\mathbb Z[q]$. In particular, we examine the hyperplane arrangement fo
Externí odkaz:
http://arxiv.org/abs/2208.00303
Publikováno v:
In Journal of Algebra 1 October 2024 655:3-28
Autor:
Misra, Kailash C.1, Patlertsin, Sutida2, Pongprasert, Suchada2 suchadapo@g.swu.ac.th, Rungratgasame, Thitarie2
Publikováno v:
Electronic Research Archive. Jul2024, Vol. 32 Issue 7, p1-8. 8p.
Leibniz algebras are certain generalizations of Lie algebras. Motivated by the concept of subinvariance in group theory, Schenkman studied properties of subinvariant subalgebras of a Lie algebra. In this paper we define subinvariant subalgebras of Le
Externí odkaz:
http://arxiv.org/abs/2006.14014
Autor:
Jayne, Rebecca L., Misra, Kailash C.
For $n \geq 2$ consider the affine Lie algebra $\widehat{s\ell}(n)$ with simple roots $\{\alpha_i \mid 0 \leq i \leq n-1\}$. Let $V(k\Lambda_0), \, k \in \mathbb{Z}_{\geq 1}$ denote the integrable highest weight $\widehat{s\ell}(n)$-module with highe
Externí odkaz:
http://arxiv.org/abs/2004.14470
Let $\mathfrak g$ be an affine Lie algebra with index set $I = \{0, 1, 2, \cdots , n\}$. It is conjectured in \cite{KNO} that for each Dynkin node $k \in I \setminus \{0\}$ the affine Lie algebra $\mathfrak g$ has a positive geometric crystal whose u
Externí odkaz:
http://arxiv.org/abs/2002.00007
Leibniz algebras are certain generalization of Lie algebras. It is natural to generalize concepts in Lie algebras to Leibniz algebras and investigate whether the corresponding results still hold. In this paper we introduce the notion of complete Leib
Externí odkaz:
http://arxiv.org/abs/2001.11979