Zobrazeno 1 - 10
of 21
pro vyhledávání: '"MIGUEL CAMPERCHOLI"'
Publikováno v:
The Journal of Symbolic Logic. 88:74-92
An algebraically expandable (AE) class is a class of algebraic structures axiomatizable by sentences of the form $\forall \exists ! \mathop{\boldsymbol {\bigwedge }}\limits p = q$ . For a logic L algebraized by a quasivariety $\mathcal {Q}$ we show t
Publikováno v:
LSFA
This work deals with the definability problem by quantifier-free first-order formulas over a finite algebraic structure. We show the problem to be coNP-complete and present a decision algorithm based on a semantical characterization of definable rela
Autor:
Xavier Caicedo, Miguel Campercholi, Diego Vaggione, Keith A. Kearnes, Ágnes Szendrei, Pedro Sánchez Terraf
Publikováno v:
Algebra universalis. 82
Let $$(\dagger )$$ denote the following property of a variety $$\mathcal V$$ : Every subquasivariety of $$\mathcal V$$ is a variety. In this paper, we prove that every idempotent dual discriminator variety has property $$(\dagger )$$ . Property $$(\d
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
In this article we formally define and investigate the computational complexity of the Definability Problem for open first-order formulas (i.e., quantifier free first-order formulas) with equality. Given a logic $\mathbf{\mathcal{L}}$, the $\mathbf{\
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e1af157329961ee56fcaedb2f7833d62
Autor:
Miguel Campercholi
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
LetA≤Bbe structures, and${\cal K}$a class of structures. An elementb∈BisdominatedbyArelative to${\cal K}$if for all${\bf{C}} \in {\cal K}$and all homomorphismsg,g':B → Csuch thatgandg'agree onA, we havegb=g'b. Our main theorem states that if${\
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::58034cc796ac98c58fb5f17470b666c2
https://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/dominions-and-primitive-positive-functions/DC9C6C021B10AE5BCE265C1730BB0CD9
https://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/dominions-and-primitive-positive-functions/DC9C6C021B10AE5BCE265C1730BB0CD9
Publikováno v:
Logic, Language, Information, and Computation ISBN: 9783662576687
WoLLIC
WoLLIC
Given a logic \(\varvec{\mathcal {L}}\), the \(\varvec{\mathcal {L}}\)-Definability Problem for finite structures takes as input a finite structure \(\varvec{A}\) and a target relation T over the domain of \(\varvec{A}\), and determines whether there
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::454a5ac67b79b77563d7c987367f1556
https://doi.org/10.1007/978-3-662-57669-4_5
https://doi.org/10.1007/978-3-662-57669-4_5
Autor:
Miguel Campercholi, Diego Vaggione
Publikováno v:
Mathematical Logic Quarterly. 60:154-160
A function is algebraic on an algebra if it can be implicitly defined by a system of equations on . In this note we give a semantic characterization for algebraic functions on quasiprimal algebras. This characterization is applied to obtain necessary
Publikováno v:
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
In this article we study algebraic functions in {→, 1}-subreducts of MV-algebras, also known as Łukasiewicz implication algebras. A function is algebraic on an algebra A if it is definable by a conjunction of equations on A. We fully characterize
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::72cdf9438293fcfbe2786ca93fe21a6e
https://www.worldscientific.com/doi/abs/10.1142/S0218196716500119
https://www.worldscientific.com/doi/abs/10.1142/S0218196716500119
Autor:
Miguel Campercholi, Diego Vaggione
Publikováno v:
Algebra universalis. 68:1-16
Let A be an algebra. A function f: A n → A is implicitly definable by a system of term equations \({\bigwedge t_{i}(x_{1}, . . . , x_{n}, z) = s_{i}(x_{1}, . . . ,x_{n}, z)}\) if f is the only n-ary operation on A making the identities \({t_{i}(\ov
Autor:
Miguel Campercholi, Diego Vaggione
Publikováno v:
Archive for Mathematical Logic. 50:713-725
A $${\forall\exists!}$$ -sentence is a sentence of the form $${\forall x_{1}\cdots x_{n}\exists!y_{1}\cdots y_{m}O(\overline{x},\overline{y})}$$ , where O is a quantifier-free formula, and $${\exists!}$$ stands for "there exist unique". We prove that