Zobrazeno 1 - 10
of 201
pro vyhledávání: '"MIDDLETON, STUART"'
Publikováno v:
Findings of the Association for Computational Linguistics: NAACL 2024, 2024, pp. 4102-4130
Prompt-based models have gathered a lot of attention from researchers due to their remarkable advancements in the fields of zero-shot and few-shot learning. Developing an effective prompt template plays a critical role. However, prior studies have ma
Externí odkaz:
http://arxiv.org/abs/2305.14493
Combining Machine Learning and Human Experts to Predict Match Outcomes in Football: A Baseline Model
In this paper, we present a new application-focused benchmark dataset and results from a set of baseline Natural Language Processing and Machine Learning models for prediction of match outcomes for games of football (soccer). By doing so we give a ba
Externí odkaz:
http://arxiv.org/abs/2012.04380
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Communications of the ACM. Apr2022, Vol. 65 Issue 4, p64-68. 5p. 1 Illustration, 1 Diagram.
Autor:
Middleton, Stuart E, Leightley, Daniel, Hinton, Patrick, Ashbridge, Sarah, Adler, Daniel A, Banks, Alec, Liakata, Maria, Chee, Brant, Basiri, Ana
Publikováno v:
RUSI Journal: Royal United Services Institute for Defence Studies; Oct2024, Vol. 169 Issue 6, p52-62, 11p
Publikováno v:
Macrofoundations: Exploring the Institutionally Situated Nature of Activity
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Middleton, Stuart Edward
Capturing user preferences is a problematic task. Simply asking the users what they want is too intrusive and prone to error, yet monitoring behaviour unobtrusively and finding meaningful patterns is both difficult and computationally time consuming.
Externí odkaz:
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.274052
Recommender systems learn about user preferences over time, automatically finding things of similar interest. This reduces the burden of creating explicit queries. Recommender systems do, however, suffer from cold-start problems where no initial info
Externí odkaz:
http://arxiv.org/abs/cs/0204012
Autor:
Middleton, Stuart E.
This paper reviews the origins of interface agents, discusses challenges that exist within the interface agent field and presents a survey of current attempts to find solutions to these challenges. A history of agent systems from their birth in the 1
Externí odkaz:
http://arxiv.org/abs/cs/0203012