Zobrazeno 1 - 10
of 267
pro vyhledávání: '"MICHAEL G. CRANDALL"'
Publikováno v:
Mathematics of Computation, 1982 Apr 01. 38(158), 654-654.
Externí odkaz:
https://www.jstor.org/stable/2007306
Autor:
Michael G. Crandall, L. C. Evans
Publikováno v:
Electronic Journal of Differential Equations, Vol Conference, Iss 06, Pp 123-129 (2001)
A real-valued function $u$ is said to be {it infinity harmonic} if it solves the nonlinear degenerate elliptic equation $-sum_{i,j=1}^nu_{x_1}u_{x_j}u_{x_ix_j}=0$ in the viscosity sense. This is equivalent to the requirement that $u$ enjoys compariso
Externí odkaz:
https://doaj.org/article/97c8a73325ed4a739f364e17f1effb82
Autor:
A. Switch, Michael G. Crandall
This chapter concerns estimates on maxima of subsolutions of scalar fully nonlinear nondegenerate elliptic equations in an open domain, together with parabolic generalizations. It discusses a maximum principle of Aleksandrov-Bakelman-Pucci type.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::7cea5513f46a5a18ff384f27a119bd82
https://doi.org/10.1201/9780429187599-8
https://doi.org/10.1201/9780429187599-8
Publikováno v:
Proceedings of the American Mathematical Society. 142:2395-2406
Publikováno v:
Expositiones Mathematicae. 30:69-95
Let $ l =[l_0,l_1]$ be the directed line segment from $l_0\in {\mathbb R}^n$ to $l_1\in{\mathbb R}^n.$ Suppose $\bar l=[\bar l_0,\bar l_1]$ is a second segment of equal length such that $l, \bar l$ satisfy the "two sticks condition": $\| l_1-\bar l_0
Publikováno v:
Communications in Partial Differential Equations. 35:391-414
Consider a function u defined on n , except, perhaps, on a closed set of potential singularities . Suppose that u solves the eikonal equation ‖Du‖ = 1 in the pointwise sense on n \, where Du denotes the gradient of u and ‖·‖ is
Publikováno v:
Transactions of the American Mathematical Society. 361:103-124
It is proved herein that any absolute minimizer u for a suitable Hamiltonian H ∈ C(R × R× U) is a viscosity solution of the Aronsson equation: Hp(Du, u, x) · (H(Du, u, x))x = 0 in U. The primary advance is to weaken the assumption that H ∈ C,
Publikováno v:
Communications in Partial Differential Equations. 32:1587-1615
Comparison results are obtained between infinity subharmonic and infinity superharmonic functions defined on unbounded domains. The primary new tool employed is an approximation of infinity subharm...
Publikováno v:
Bulletin of the American Mathematical Society. 41:439-506
A detailed analysis of the class of absolutely minimizing functions in Euclidean spaces and the relationship to the infinity Laplace equation
Autor:
Michael G. Crandall, Pei-Yong Wang
Publikováno v:
Journal of Evolution Equations. 3:653-672