Zobrazeno 1 - 10
of 42
pro vyhledávání: '"MELONG, FRIDOLIN"'
In this paper, we characterize the multivariate uniform probability distribution of the first and second kinds in the framework of the $\mathcal{R}(p,q)$-deformed quantum algebras. Their bivariate distributions and related properties, namely ($\mathc
Externí odkaz:
http://arxiv.org/abs/2305.18194
Autor:
Melong, Fridolin
In this paper, we construct the super Virasoro algebra with an arbitrary conformal dimension $\Delta$ from the generalized $\mathcal{R}(p,q)$-deformed quantum algebra and investigate the $\mathcal{R}(p,q)$-deformed super Virasoro algebra with the par
Externí odkaz:
http://arxiv.org/abs/2305.04263
Autor:
Melong, Fridolin, Wulkenhaar, Raimar
In this paper, we construct the Heisenberg-Virasoro algebra in the framework of the $\mathcal{R}(p,q)$-deformed quantum algebras. Moreover, the $\mathcal{R}(p,q)$-Heisenberg-Witt $n$-algebras is also investigated. Furthermore, we generalize the notio
Externí odkaz:
http://arxiv.org/abs/2303.08073
Autor:
Melong, Fridolin
We construct the multivariate probability distributions (P\'olya, inverse P\'olya, hypergeometric and negative hypergeometric) from the generalized quantum algebra. Moreover, we derive the bivariate probability distributions and determine their prope
Externí odkaz:
http://arxiv.org/abs/2206.09147
Autor:
Melong, Fridolin
In this paper, we investigate the trinomial probability distribution of the first and second kind from the $\mathcal{R}(p,q)$-quantum algebras. Moreover, we compute their $\mathcal{R}(p,q)$-factorial moments and derive the corresponding covariance. P
Externí odkaz:
http://arxiv.org/abs/2206.07175
Autor:
Melong, Fridolin
The multinomial coefficient and their recurrence relations from the generalized quantum deformed algebras are examined. Moreover, the $\mathcal{R}(p,q)-$ deformed multinomial probability distribution and the negative $\mathcal{R}(p,q)-$ deformed mult
Externí odkaz:
http://arxiv.org/abs/2206.05890
Autor:
Melong, Fridolin
In this paper, we construct the super Witt algebra and super Virasoro algebra in the framework of the $\mathcal{R}(p,q)$-deformed quantum algebras. Moreover, we perform the super $\mathcal{R}(p,q)$-deformed Witt $n$-algebra, the $\mathcal{R}(p,q)$-de
Externí odkaz:
http://arxiv.org/abs/2206.06483
We perform generalizations of Witt and Virasoro algebras, and derive the corresponding Korteweg-de Vries equations from known R(p,q)-deformed quantum algebras previously introduced in J. Math. Phys. 51, 063518, (2010). Related relevant properties are
Externí odkaz:
http://arxiv.org/abs/2008.04778
This paper addresses a theory of R(p,q)-deformed combinatorics in discrete probability. It mainly focuses on R(p,q)-deformed factorials, binomial coefficients, Vandermonde's formula, Cauchy's formula, binomial and negative binomial formulae, factoria
Externí odkaz:
http://arxiv.org/abs/1906.03059
In this paper, we define and discuss $\mathcal{R}(p,q)$- deformations of basic univariate discrete distributions of the probability theory. We mainly focus on binomial, Euler, P\'olya and inverse P\'olya distributions. We discuss relevant $\mathcal{R
Externí odkaz:
http://arxiv.org/abs/1901.01840