Zobrazeno 1 - 9
of 9
pro vyhledávání: '"MASCELLANI, Giovanni"'
Publikováno v:
Trans. Amer. Math. Soc. 371 (2019) 7757-7790
In this paper we analyze the capacitary potential due to a charged body in order to deduce sharp analytic and geometric inequalities, whose equality cases are saturated by domains with spherical symmetry. In particular, for a regular bounded domain $
Externí odkaz:
http://arxiv.org/abs/1705.09940
Publikováno v:
Pacific J. Math. 270 (2014) 151-166
We describe the precise structure of the distributional Hessian of the distance function from a point of a Riemannian manifold. In doing this we also discuss some geometrical properties of the cutlocus of a point and we compare some different weak no
Externí odkaz:
http://arxiv.org/abs/1303.1421
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We give an update on CMS, the free and open source grading system used in IOI 2012, 2013 and 2014. In particular, we focus on the new features and development practices; on what we learned by running dozens of contests with CMS; on the community of u
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______4054::fabe1774885e9d26a952d99cf7643704
https://hdl.handle.net/11384/91936
https://hdl.handle.net/11384/91936
Autor:
Maggiolo S, MASCELLANI, GIOVANNI
We present Contest Management System (CMS), the free and open source grading system that will be used in IOI 2012. CMS has been designed and developed from scratch, with the aim of providing a grading system that naturally adapts to the needs of an I
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______4054::88beb4f29d2fce8b0c6ca722f4c6213c
https://hdl.handle.net/11384/12473
https://hdl.handle.net/11384/12473
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Olympiads in Informatics; 2012, Vol. 6, p86-99, 14p
We describe the precise structure of the distributional Hessian of the distance function from a point of a Riemannian manifold. At the same time we discuss some geometrical properties of the cut locus of a point, and compare some different weak notio
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f8775f0bccfc7a8fe7c28cd3939a9422
http://arxiv.org/abs/1303.1421
http://arxiv.org/abs/1303.1421