Zobrazeno 1 - 10
of 24
pro vyhledávání: '"MARTIN MARITSCH"'
Autor:
Caterina Bérubé, Martin Maritsch, Vera Franziska Lehmann, Mathias Kraus, Stefan Feuerriegel, Thomas Züger, Felix Wortmann, Christoph Stettler, Elgar Fleisch, A Baki Kocaballi, Tobias Kowatsch
Publikováno v:
JMIR Human Factors, Vol 11, p e46967 (2024)
BackgroundHypoglycemia threatens cognitive function and driving safety. Previous research investigated in-vehicle voice assistants as hypoglycemia warnings. However, they could startle drivers. To address this, we combine voice warnings with ambient
Externí odkaz:
https://doaj.org/article/80fa9ee0854f4efdbadf2eabd84f6c98
Autor:
Caterina Bérubé, Vera Franziska Lehmann, Martin Maritsch, Mathias Kraus, Stefan Feuerriegel, Felix Wortmann, Thomas Züger, Christoph Stettler, Elgar Fleisch, A Baki Kocaballi, Tobias Kowatsch
Publikováno v:
JMIR Human Factors, Vol 11, p e42823 (2024)
BackgroundHypoglycemia is a frequent and acute complication in type 1 diabetes mellitus (T1DM) and is associated with a higher risk of car mishaps. Currently, hypoglycemia can be detected and signaled through flash glucose monitoring or continuous gl
Externí odkaz:
https://doaj.org/article/1e4b350e113548a68878864120251206
Autor:
Simon Föll, Adrian Lison, Martin Maritsch, Karsten Klingberg, Vera Lehmann, Thomas Züger, David Srivastava, Sabrina Jegerlehner, Stefan Feuerriegel, Elgar Fleisch, Aristomenis Exadaktylos, Felix Wortmann
Publikováno v:
JMIR Formative Research, Vol 6, Iss 6, p e35717 (2022)
BackgroundTo provide effective care for inpatients with COVID-19, clinical practitioners need systems that monitor patient health and subsequently allow for risk scoring. Existing approaches for risk scoring in patients with COVID-19 focus primarily
Externí odkaz:
https://doaj.org/article/9acec8fc676f454385cf4af3961f2c64
Publikováno v:
IEEE Internet of Things Journal. 9:11699-11711
Driver status monitoring systems are a vital component of smart cars in the future, especially in the era when an increasing amount of time is spent in the vehicle. The heart rate (HR) is one of the most important physiological signals of driver stat
Autor:
Caterina Bérubé, Martin Maritsch, Vera Lehmann, Mathias Kraus, Stefan Feuerriegel, Thomas Züger, Felix Wortmann, Christoph Stettler, Elgar Fleisch, A. Baki Kocaballi, Tobias Kowatsch
BACKGROUND Hypoglycemia is a serious complication in diabetes, it impairs cognitive and psychomotor function, and is linked to driving mishaps. In-vehicle voice assistants (VAs) have been designed to proactively deliver a warning of hypoglycemia whil
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6267229930b385f064996b6a95b18bb8
https://doi.org/10.2196/preprints.46967
https://doi.org/10.2196/preprints.46967
Autor:
Christoph Stettler, Felix Wortmann, VThomas Zueger, Elgar Fleisch, Caroline Albrecht, Katja Odermatt, Sophie Lagger, Mathias Kraus, Eva van Weenen, Martin Maritsch, Simon Föll, Vera Lehmann
Aim To develop a non-invasive hypoglycemia detection approach using smartwatch data. Research Design and Methods We prospectively collected data from two wrist-worn wearables (Garmin vivoactive 4S; Empatica E4) and continuous glucose monitoring value
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dac3f1b918c08ba646f7249e93fcf3b5
https://doi.org/10.2337/figshare.21995150
https://doi.org/10.2337/figshare.21995150
Autor:
null Vera Lehmann, null Thomas Zueger, null Martin Maritsch, null Mathias Kraus, null Caroline Albrecht, null Caterina Bérubé, null Stefan Feuerriegel, null Felix Wortmann, null Tobias Kowatsch, null Naïma Styger, null Sophie Lagger, null Markus Laimer, null Elgar Fleisch, null Christoph Stettler
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::8b544c4e0b92023b228735b448ee3c6b
https://doi.org/10.1111/dom.15021/v2/response1
https://doi.org/10.1111/dom.15021/v2/response1
Autor:
Kevin Koch, Martin Maritsch, Eva Van Weenen, Stefan Feuerriegel, Matthias Pfäffli, Elgar Fleisch, Wolfgang Weinmann, Felix Wortmann
Publikováno v:
CHI '23: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems
Koch, Kevin; Maritsch, Martin; Van Weenen, Eva; Feuerriegel, Stefan; Pfäffli, Matthias; Fleisch, Elgar; Weinmann, Wolfgang; Wortmann, Felix (2023). Leveraging driver vehicle and environment interaction: Machine learning using driver monitoring cameras to detect drunk driving. In: CHI '23: CHI Conference on Human Factors in Computing Systems (pp. 1-32). New York, NY, USA: ACM 10.1145/3544548.3580975
Koch, Kevin; Maritsch, Martin; Van Weenen, Eva; Feuerriegel, Stefan; Pfäffli, Matthias; Fleisch, Elgar; Weinmann, Wolfgang; Wortmann, Felix (2023). Leveraging driver vehicle and environment interaction: Machine learning using driver monitoring cameras to detect drunk driving. In: CHI '23: CHI Conference on Human Factors in Computing Systems (pp. 1-32). New York, NY, USA: ACM 10.1145/3544548.3580975
Excessive alcohol consumption causes disability and death. Digital interventions are promising means to promote behavioral change and thus prevent alcohol-related harm, especially in critical moments such as driving. This requires real-time informati
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dedd1e48aadfdb689938f0550124c091
Autor:
VERA LEHMANN, THOMAS ZUEGER, MARTIN MARITSCH, MICHAEL NOTTER, SIMON SCHALLMOSER, CATERINA BÉRUBÉ, CAROLINE ALBRECHT, MATHIAS KRAUS, STEFAN FEUERRIEGEL, ELGAR FLEISCH, TOBIAS KOWATSCH, SOPHIE N. LAGGER, MARKUS LAIMER, FELIX WORTMANN, CHRISTOPH STETTLER
Publikováno v:
Diabetes. 71
Aim: To develop a non-invasive machine learning (ML) approach to detect hypoglycemia during real car driving based on driving (CAN) , and eye and head motion (EHM) data. Methods: We logged CAN and EHM data in 21 subjects with type 1 diabetes (18 male
Autor:
Martin Maritsch, Kevin Koch, Hauke Thomsen, Niklas Kuhl, Matthias Pfaffli, Wolfgang Weinmann, Felix Wortmann
Publikováno v:
2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC)
Modern vehicles typically are equipped with assistance systems to support drivers in staying vigilant. To assess the driver state, such systems usually split characteristic vehicle signals into smaller segments which are subsequently fed into algorit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::814ef179f4cf19f3b690e7b0e9845870
https://hdl.handle.net/20.500.11850/556281
https://hdl.handle.net/20.500.11850/556281