Zobrazeno 1 - 10
of 53
pro vyhledávání: '"MARIE-FRANCE VIGNÉRAS"'
Publikováno v:
Forum of Mathematics, Sigma, Vol 8 (2020)
Suppose that $\mathbf{G}$ is a connected reductive group over a finite extension $F/\mathbb{Q}_{p}$ and that $C$ is a field of characteristic $p$. We prove that the group $\mathbf{G}(F)$ admits an irreducible admissible supercuspidal, or equivalently
Externí odkaz:
https://doaj.org/article/a4eda592221842a6bee80ffc014f65df
Autor:
Guy, Henniart, Marie-France, Vignéras
For a central division algebra $D$ of dimension $d^2$ over a finite extension $F$ of $\mathbb Q_p$ or of $\mathbb F_p((t))$, a field $R$ of characteristic prime to $p$, and an irreducible smooth $R$-representation $\pi$ of $G=GL_n(D)$, we show that f
Externí odkaz:
http://arxiv.org/abs/2305.06581
Autor:
Guy, Henniart, Marie-France, Vigneras
Let $F$ be any non archimedean locally compact field of residual characteristic $p$, let $G$ be any reductive connected $F$-group and let $K$ be any special parahoric subgroup of $G(F)$. We choose a parabolic $F$-subgroup $P$ of $G$ with Levi decompo
Externí odkaz:
http://arxiv.org/abs/1111.7276
Autor:
Guy Henniart, Marie-France Vignéras
We investigate the irreducible cuspidal $C$-representations of a reductive $p$-adic group $G$ over a field $C$ of characteristic different from $p$. When $C$ is algebraically closed, for many groups $G$, a list of cuspidal $C$-types $(J,\lambda)$ has
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::68490b614ce6b804c35b0ae1b9ba4257
http://arxiv.org/abs/2010.06462
http://arxiv.org/abs/2010.06462
Autor:
Rachel Ollivier, Marie-France Vignéras
Publikováno v:
Selecta Mathematica. 24:3973-4039
Let $$\mathrm{F}$$ (resp. $$\mathbb F$$ ) be a nonarchimedean locally compact field with residue characteristic p (resp. a finite field with characteristic p). For $$k=\mathrm{F}$$ or $$k=\mathbb F$$ , let $$\mathbf {G}$$ be a connected reductive gro
Autor:
Marie-France Vignéras
Publikováno v:
Pacific Journal of Mathematics. 279:499-529
Autor:
Marie-France Vignéras
Publikováno v:
Compositio Mathematica. 152:693-753
Let $R$ be a commutative ring, let $F$ be a locally compact non-archimedean field of finite residual field $k$ of characteristic $p$, and let $\mathbf{G}$ be a connected reductive $F$-group. We show that the pro-$p$-Iwahori Hecke $R$-algebra of $G=\m
Autor:
Marie-France Vignéras
Publikováno v:
Arbeitstagung Bonn 2013 ISBN: 9783319436463
We extend the results of Emerton on the ordinary part functor to the category of the smooth representations over a general commutative ring R, of a general reductive p-adic group G (rational points of a reductive connected group over a local non-arch
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::ab5c0068d7c3ceefdcb3dc7702644b9c
https://doi.org/10.1007/978-3-319-43648-7_15
https://doi.org/10.1007/978-3-319-43648-7_15
Autor:
Marie-France Vignéras
Publikováno v:
Geometric and Functional Analysis. 17:2090-2112
Autor:
Marie-France Vignéras
Publikováno v:
Mathematische Annalen. 331:523-556
The motivation of this paper is the search for a Langlands correspondence modulo p. We show that the pro-p-Iwahori Hecke ring Open image in new window of a split reductive p-adic group G over a local field F of finite residue field Fq with q elements