Zobrazeno 1 - 10
of 23
pro vyhledávání: '"MARC HOYOIS"'
Publikováno v:
Épijournal de Géométrie Algébrique, Vol Volume 5 (2021)
We obtain geometric models for the infinite loop spaces of the motivic spectra $\mathrm{MGL}$, $\mathrm{MSL}$, and $\mathbf{1}$ over a field. They are motivically equivalent to $\mathbb{Z}\times \mathrm{Hilb}_\infty^\mathrm{lci}(\mathbb{A}^\infty)^+$
Externí odkaz:
https://doaj.org/article/c33b7305e536426480166b1e6e37b025
Publikováno v:
Forum of Mathematics, Pi, Vol 8 (2020)
We prove that the $\infty $-category of $\mathrm{MGL} $-modules over any scheme is equivalent to the $\infty $-category of motivic spectra with finite syntomic transfers. Using the recognition principle for infinite $\mathbf{P} ^1$-loop spaces, we de
Externí odkaz:
https://doaj.org/article/ec3170461b7743b495d0448daf558807
Publikováno v:
Forum of Mathematics, Sigma, Vol 7 (2019)
We construct, for any set of primes $S$, a triangulated category (in fact a stable $\infty$-category) whose Grothendieck group is $S^{-1}\mathbf{Z}$. More generally, for any exact $\infty$-category $E$, we construct an exact $\infty$-category $S^{-1}
Externí odkaz:
https://doaj.org/article/cc111a5a43e64d94adcaa3ae98012985
Publikováno v:
Cambridge Journal of Mathematics. 9:431-549
We prove a recognition principle for motivic infinite P1-loop spaces over a perfect field. This is achieved by developing a theory of framed motivic spaces, which is a motivic analogue of the theory of E-infinity-spaces. A framed motivic space is a m
Publikováno v:
Elmanto, E, Hoyois, M, Iwasa, R & Kelly, S 2021, ' Cdh descent, cdarc descent, and Milnor excision ', Mathematische Annalen, vol. 379, pp. 1011–1045 . https://doi.org/10.1007/s00208-020-02083-5
We give necessary and sufficient conditions for a cdh sheaf to satisfy Milnor excision, following ideas of Bhatt and Mathew. Along the way, we show that the cdh infinity-topos of a quasi-compact quasi-separated scheme of finite valuative dimension is
Publikováno v:
Algebraic Geometry. :634-644
We give a streamlined proof of A(1)-representability for G-torsors under "isotropic" reductive groups, extending previous results in this sequence of papers to finite fields. We then analyze a collection of group homomorphisms that yield fiber sequen
Publikováno v:
Journal of Topology. 13:460-500
We relate the recognition principle for infinite $\mathbf P^1$-loop spaces to the theory of motivic fundamental classes of D\'eglise, Jin, and Khan. We first compare two kinds of transfers that are naturally defined on cohomology theories represented
Publikováno v:
Algebra & Number Theory. 13:695-747
We study generically split octonion algebras over schemes using techniques of ${\mathbb A}^1$-homotopy theory. By combining affine representability results with techniques of obstruction theory, we establish classification results over smooth affine
Publikováno v:
Hoyois, M, Safronov, P, Scherotzke, S & Sibilla, N 2021, ' The categorified Grothendieck-Riemann-Roch theorem ', Compositio Mathematica, vol. 157, no. 1, pp. 154-214 . https://doi.org/10.1112/S0010437X20007642
Compositio Mathematica
Compositio Mathematica
In this paper we prove a categorification of the Grothendieck-Riemann-Roch theorem. Our result implies in particular a Grothendieck-Riemann-Roch theorem for To\"en and Vezzosi's secondary Chern character. As a main application, we establish a compari
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::57c32f66081c7120f218282fd89bf72b
http://hdl.handle.net/20.500.11767/128270
http://hdl.handle.net/20.500.11767/128270
We prove that the $\infty$-category of motivic spectra satisfies Milnor excision: if $A\to B$ is a morphism of commutative rings sending an ideal $I\subset A$ isomorphically onto an ideal of $B$, then a motivic spectrum over $A$ is equivalent to a pa
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0cf723cf263fb98e13fa4d29bc4043df
http://arxiv.org/abs/2004.12098
http://arxiv.org/abs/2004.12098