Zobrazeno 1 - 10
of 32
pro vyhledávání: '"MAGNUS GOFFENG"'
Autor:
HEIKO GIMPERLEIN, MAGNUS GOFFENG
Publikováno v:
Forum of Mathematics, Sigma, Vol 5 (2017)
We consider the spectral behavior and noncommutative geometry of commutators $[P,f]$ , where $P$ is an operator of order 0 with geometric origin and $f$ a multiplication operator by a function. When $f$ is Hölder continuous, the spectral asympto
Externí odkaz:
https://doaj.org/article/b41f3385485c4efdaa861ba7ea12a29f
Publikováno v:
Web of Science
We study the geometric significance of Leinster's notion of magnitude for a smooth manifold with boundary of arbitrary dimension, motivated by open questions for the unit disk in $\mathbb{R}^2$. For a large class of distance functions, including embe
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::15160a9417475481f7c3761f34b5747f
Publikováno v:
Matematicheskie Zametki. 110:786-788
Autor:
Heiko Gimperlein, Magnus Goffeng
We study the geometric significance of Leinster's notion of magnitude for a compact metric space. For a smooth, compact domain in an odd-dimensional Euclidean space, we show that the asymptotic expansion of the magnitude function at infinity determin
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ec15e48d497e6a33b59348a84bb1dd87
http://arxiv.org/abs/2109.10097
http://arxiv.org/abs/2109.10097
Autor:
Magnus Goffeng, Robin J. Deeley
Publikováno v:
Journal of Topology. 11:967-1001
Inspired by an analytic construction of Chang, Weinberger and Yu, we define an assembly map in relative geometric K-homology. The properties of the geometric assembly map are studied using a variety of index theoretic tools (for example, the localize
Publikováno v:
Journal of Topology and Analysis. 10:355-400
We consider Hilsum's notion of bordism as an equivalence relation on unbounded $KK$-cycles and study the equivalence classes. Upon fixing two $C^*$-algebras, and a $*$-subalgebra dense in the first $C^*$-algebra, a $\mathbb{Z}/2\mathbb{Z}$-graded abe
Autor:
Magnus Goffeng, Robin J. Deeley
Publikováno v:
Mathematische Nachrichten. 290:2207-2233
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim A geometric model for twisted K-homology is introduced. It is modeled after the Mathai–Melrose–Singer fractional analytic index theorem in the same way as the Baum–Douglas model of K-homology w
Autor:
Magnus Goffeng, Elmar Schrohe
Publikováno v:
Journal of Spectral Theory. 7:847-879
We study the spectral flow of Landau-Robin hamiltonians in the exterior of a compact domain with smooth boundary. This provides a method to study the spectrum of the exterior Landau-Robin hamiltonian's dependence on the choice of Robin data, even exp
The main result of the present paper is that the stable and unstable C*-algebras associated to a mixing Smale space always contain nonzero projections. This gives a positive answer to a question of the first listed author and Karen Strung and has imp
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::d91ce08e6d83a9926898cbb7b60eb992
http://arxiv.org/abs/1901.10324
http://arxiv.org/abs/1901.10324
Autor:
Alexandr Usachev, Magnus Goffeng
In this paper we study Dixmier traces of powers of Hankel operators in Lorentz ideals. We extend results of Engli\v{s}-Zhang to the case of powers $p\geq 1$ and general Lorentz ideals starting from abstract extrapolation results of Gayral-Sukochev. I
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::89089f28570566d2a633bcb2670a3ebf
http://arxiv.org/abs/1901.05246
http://arxiv.org/abs/1901.05246