Zobrazeno 1 - 10
of 740
pro vyhledávání: '"MADDEN, MICHAEL"'
Depth estimation from 2D images is a common computer vision task that has applications in many fields including autonomous vehicles, scene understanding and robotics. The accuracy of a supervised depth estimation method mainly relies on the chosen lo
Externí odkaz:
http://arxiv.org/abs/2404.07686
In novelty detection, the goal is to decide if a new data point should be categorized as an inlier or an outlier, given a training dataset that primarily captures the inlier distribution. Recent approaches typically use deep encoder and decoder netwo
Externí odkaz:
http://arxiv.org/abs/2404.04456
This paper presents a new approach to classification of high dimensional spectroscopy data and demonstrates that it outperforms other current state-of-the art approaches. The specific task we consider is identifying whether samples contain chlorinate
Externí odkaz:
http://arxiv.org/abs/2003.11842
In the current era of neural networks and big data, higher dimensional data is processed for automation of different application areas. Graphs represent a complex data organization in which dependencies between more than one object or activity occur.
Externí odkaz:
http://arxiv.org/abs/1912.09592
Mathematical modeling with Ordinary Differential Equations (ODEs) has proven to be extremely successful in a variety of fields, including biology. However, these models are completely deterministic given a certain set of initial conditions. We conver
Externí odkaz:
http://arxiv.org/abs/1910.04909
This paper presents, evaluates, and discusses a new software tool to automatically build Dynamic Bayesian Networks (DBNs) from ordinary differential equations (ODEs) entered by the user. The DBNs generated from ODE models can handle both data uncerta
Externí odkaz:
http://arxiv.org/abs/1910.04895
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Procedia Computer Science 2023 217:436-445