Zobrazeno 1 - 10
of 20
pro vyhledávání: '"M.E. Bak"'
Autor:
Pankaj Kumar, Laxmi Prasad Sapkota, Vijay Kumar, Yusra A. Tashkandy, M.E. Bakr, Oluwafemi Samson Balogun, Ahmed M. Gemeay
Publikováno v:
Alexandria Engineering Journal, Vol 106, Iss , Pp 664-674 (2024)
This work investigates a new class of statistical models and presents a specific example from this class. We created a new family of distributions using trigonometric functions, known as the cosine pie-power odd-G family. The paper details the fundam
Externí odkaz:
https://doaj.org/article/cbe2ad2def154bfd9efb499398a07245
On the empirical exploration of a new probability distribution in physical education and reliability
Autor:
Ji Zhou, Haonan Qian, Yao Yao, Yusra A. Tashkandy, M.E. Bakr, Anoop Kumar, Mahmoud Mohamed Bahloul
Publikováno v:
Alexandria Engineering Journal, Vol 106, Iss , Pp 422-437 (2024)
Probability-based methodologies have gained widespread recognition for their pivotal role in steering decision-making in contexts marked by uncertainty or vagueness. In order to guarantee that decisions made in these circumstances are both significan
Externí odkaz:
https://doaj.org/article/cded5a33e5ab47258a2b23544776e412
Autor:
Shuming Han, Dongmei Wang, Yusra A. Tashkandy, M.E. Bakr, Marwa M. Mohie El-Din, Assem Elshenawya
Publikováno v:
Alexandria Engineering Journal, Vol 106, Iss , Pp 288-297 (2024)
It is a proven authenticity that probability-schooled methodologies have a cardinal role in making decisions under the vagueness circumstances. Thus, to reach meaningful and fruitful decisions under vagueness circumstances, numerous probability-focus
Externí odkaz:
https://doaj.org/article/f3e82e65e81d408faf4ad795fb39663b
Autor:
M. Sjölin, I.R. Vogelius, N. K, G. Jensen, M.E. Bak, F. Kjær-Kristoffersen, T.J. Nøttrup, J. Friborg, V.N. Hansen, J. Petersen
Publikováno v:
Radiotherapy and Oncology. 170:S1427-S1429
Autor:
Junqiao Zhu, Marwa M. Mohie El-Din, Jin-Taek Seong, Yusra A. Tashkandy, M.E. Bakr, Anoop Kumar
Publikováno v:
Alexandria Engineering Journal, Vol 101, Iss , Pp 108-117 (2024)
Probability-arisen models play a considerable role in preparing a crucial stage for decision-making concerning reliability, engineering, and more closely related scenarios. Bearing in mind the consequential roles of probability-arisen models, we intr
Externí odkaz:
https://doaj.org/article/bf14e70f38354a728b3bb4610657d34f
Autor:
Yusra A. Tashkandy, Assem Elshenawy, Getachew Mekiso Tekle, M.E. Bakr, Oluwafemi Samson Balogun
Publikováno v:
Alexandria Engineering Journal, Vol 96, Iss , Pp 303-322 (2024)
Statistical methods have widespread applications in real-life scenarios. Researchers have expressed keen interest in implementing different functions to raise new probability distributions. However, very limited efforts have been made to raise new me
Externí odkaz:
https://doaj.org/article/63874d169c45405e9bee7353c6cf3606
Autor:
Muhammad Junaid, Sadaf Manzoor, Sardar Hussain, M.E. Bakr, Oluwafemi Samson Balogun, Shahab Rasheed
Publikováno v:
Heliyon, Vol 10, Iss 19, Pp e38343- (2024)
Auxiliary data needs to be incorporated into survey sampling in order to create a precise population parameter estimator. This study investigates improving the efficiency of these estimators, the researchers use study variable [cumulative distributio
Externí odkaz:
https://doaj.org/article/5411c037aa154a36bd516c611e6abf45
Autor:
Ahmed M. Gemeay, Abdelali Ezzebsa, Halim Zeghdoudi, Caner Tanış, Yusra A. Tashkandy, M.E. Bakr, Anoop Kumar
Publikováno v:
Heliyon, Vol 10, Iss 17, Pp e36594- (2024)
This paper introduces the power new XLindley (PNXL) distribution, a novel two-parameter distribution derived using the power transformation method applied to the XLindley distribution. We thoroughly explore the structural properties of the PNXL distr
Externí odkaz:
https://doaj.org/article/6b72a3cec323459393350bf1f76ae346
Autor:
Sajid Mehboob Zaidi, Zafar Mahmood, Mintodê Nicodème Atchadé, Yusra A. Tashkandy, M.E. Bakr, Ehab M. Almetwally, Eslam Hussam, Ahmed M. Gemeay, Anoop Kumar
Publikováno v:
Heliyon, Vol 10, Iss 12, Pp e32011- (2024)
This article proposes and discusses a novel approach for generating trigonometric G-families using hybrid generalizers of distributions. The proposed generalizer is constructed by utilizing the tangent trigonometric function and distribution function
Externí odkaz:
https://doaj.org/article/eaa2d0e5fed44e29b3f7c49048dac0fd
Publikováno v:
Alexandria Engineering Journal, Vol 94, Iss , Pp 310- (2024)
Externí odkaz:
https://doaj.org/article/57aec5957f304a2d81444dd04020ba3f