Zobrazeno 1 - 10
of 80
pro vyhledávání: '"M.C. Ozturk"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
M.C. Ozturk, Jose C. Principe
Publikováno v:
New Mathematics and Natural Computation. :265-286
Walter Freeman in his classic 1975 book "Mass Activation of the Nervous System" presented a hierarchy of dynamical computational models based on studies and measurements done in real brains, which has been known as the Freeman's K model (FKM). Much m
Publikováno v:
Neural Computation. 19:111-138
The design of echo state network (ESN) parameters relies on the selection of the maximum eigenvalue of the linearized system around zero (spectral radius). However, this procedure does not quantify in a systematic manner the performance of the ESN in
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Liping Deng, Mark D. Skowronski, Jose C. Principe, M.C. Ozturk, John G. Harris, Walter J. Freeman, Dongming Xu, Bryan Davis
Publikováno v:
Bioelectric Engineering ISBN: 9780306486098
Brain function remains one of the most elusive and fascinating phenomena challenging modem science (Churchland, 1986). Although a lot is already known about the neuron and its functional characteristics, when we address the information-processing cap
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::024d13ab481fda73fec865b3c529a6da
https://doi.org/10.1007/0-306-48610-5_9
https://doi.org/10.1007/0-306-48610-5_9
Publikováno v:
IJCNN
A type of recurrent neural network has been proposed by H. Jaeger. This model, called Echo State Network (ESN), possesses a highly interconnected and recurrent topology of nonlinear processing elements, which constitutes a "reservoir of rich dynamics
Publikováno v:
IJCNN
This paper describes how echo state networks (ESN) can be used in conjunction with minimum average correlation energy (MACE) filters in order to create a system that can identify spikes in neural recordings. Various experiments using real-world data
Publikováno v:
2007 IEEE Workshop on Machine Learning for Signal Processing.
Signal processing in the complex domain is an essential part of signal processing particularly in digital communication systems. Considerable efforts have been made to convert the well established tools of real signal processing such as backpropagati
Autor:
Jose C. Principe, M.C. Ozturk
Publikováno v:
Neural networks : the official journal of the International Neural Network Society. 20(3)
The use of echo state networks (ESN) to find patterns in time (dynamical pattern recognition) has been limited. This paper argues that ESNs are particularly well suited for dynamical pattern recognition and proposes a linear associative memory (LAM)