Zobrazeno 1 - 10
of 79
pro vyhledávání: '"M. Tavassoli Kajani"'
Numerical Solution of Fractional Order Integro-Differential Equations via Müntz Orthogonal Functions
Publikováno v:
Journal of Mathematics, Vol 2023 (2023)
In this paper, we derive a spectral collocation method for solving fractional-order integro-differential equations by using a kind of Müntz orthogonal functions that are defined on 0,1 and have simple and real roots in this interval. To this end, we
Externí odkaz:
https://doaj.org/article/46ed682d212f44b5b1cf7c757badb5fb
Publikováno v:
Advances in Mathematical Physics, Vol 2023 (2023)
This paper uses Müntz orthogonal functions to numerically solve the fractional Bagley–Torvik equation with initial and boundary conditions. Müntz orthogonal functions are defined on the interval 0,1 and have simple and distinct real roots on this
Externí odkaz:
https://doaj.org/article/75f7d014d0644f59a991e817de4e7f28
Publikováno v:
International Journal Bioautomation, Vol 20, Iss 2, Pp 193-204 (2016)
In this paper, the model of HIV infection of CD4+ T cells is considered as a system of fractional differential equations. Then, a numerical method by using collocation method based on the Müntz-Legendre polynomials to approximate solution of the mod
Externí odkaz:
https://doaj.org/article/724b7405980a4564934fc74ccc4b5527
Autor:
S. Mahdavi∗, M. Tavassoli Kajani
Publikováno v:
Journal of Mathematical Extension, Vol 4, Iss 2, Pp 107-117 (2010)
. In this paper,the continuse Legendre wavelets constructed on the interval [0, 1] are used to solve the nonlinear Fredholm integrodifferential equation. The nonlinear part of integro-differential is approximated by Legendre wavelets, and the nonl
Externí odkaz:
https://doaj.org/article/ec20241ee2484d1996ee101257802cdc
Publikováno v:
Journal of Mathematical Extension, Vol 4, Iss 2, Pp 51-58 (2010)
In this paper, a numerical method for solving the nonlinear Fredholm integral equation is presented. We intend to approximate the solution of this equation by quadrature methods and by doing so, we solve the nonlinear Fredholm integral equation mo
Externí odkaz:
https://doaj.org/article/7bf84756c29642848d64b9970a3e44a3
Publikováno v:
Journal of Applied Mathematics, Vol 2013 (2013)
In this paper, we propose an iterative spectral method for solving differential equations with initial values on large intervals. In the proposed method, we first extend the Legendre wavelet suitable for large intervals, and then the Legendre-Guass c
Externí odkaz:
https://doaj.org/article/64edc6398fe6421187f5e3e88c44f47b
Publikováno v:
Journal of Applied Mathematics, Vol 2012 (2012)
Rational Chebyshev bases and Galerkin method are used to obtain the approximate solution of a system of high-order integro-differential equations on the interval [0,∞). This method is based on replacement of the unknown functions by their truncated
Externí odkaz:
https://doaj.org/article/884409387bd846daa0005719fc3b16ea
Publikováno v:
Journal of Applied Mathematics, Vol 2012 (2012)
We propose a numerical method for solving nonlinear initial-value problems of Lane-Emden type. The method is based upon nonclassical Gauss-Radau collocation points, and weighted interpolation. Nonclassical orthogonal polynomials, nonclassical Radau p
Externí odkaz:
https://doaj.org/article/dee802aa6915477596767d5c49a36dd6
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Filomat. 36:1685-1697
In this paper, two collocation methods based on the shifted Legendre polynomials are proposed for solving system of nonlinear Fredholm-Volterra integro-differential equations. The equation considered in this paper involves the derivative of unknown f