Zobrazeno 1 - 10
of 95
pro vyhledávání: '"M. Seetharama Gowda"'
Autor:
M. Seetharama Gowda, Juyoung Jeong
Publikováno v:
Results in Mathematics. 78
Autor:
M. Seetharama Gowda
Publikováno v:
Positivity. 27
Autor:
M. Seetharama Gowda
Publikováno v:
Optimization Letters. 16:1119-1128
The commutation principle of Ramirez et al. (SIAM J Optim 23:687–694, 2013) proved in the setting of Euclidean Jordan algebras says that when the sum of a real valued function h and a spectral function $$\Phi $$ is minimized/maximized over a spectr
Autor:
M. Seetharama Gowda
Publikováno v:
Linear and Multilinear Algebra. 70:6535-6547
This article deals with necessary and sufficient conditions for a family of elements in a Euclidean Jordan algebra to have simultaneous (order) spectral decomposition. Motivated by a well-known mat...
Autor:
Juyoung Jeong, M. Seetharama Gowda
Publikováno v:
Linear and Multilinear Algebra. 70:4157-4176
Given a linear map T on a Euclidean Jordan algebra of rank n, we consider the set of all nonnegative vectors q in R n with decreasing components that satisfy the pointwise weak-majorization inequal...
Autor:
M. Seetharama Gowda
Publikováno v:
Linear Algebra and its Applications. 600:1-21
In a Euclidean Jordan algebra V of rank n, an element x is said to be majorized by an element y, symbolically x ≺ y , if the corresponding eigenvalue vector λ ( x ) is majorized by λ ( y ) in R n . In this article, we describe pointwise majorizat
Autor:
M. Seetharama Gowda
Publikováno v:
Journal of Mathematical Analysis and Applications. 474:248-263
In a Euclidean Jordan algebra V of rank n which carries the trace inner product, to each element x we associate the eigenvalue vector λ ( x ) whose components are the eigenvalues of x written in the decreasing order. For any p ∈ [ 1 , ∞ ] , we d
Autor:
M. Seetharama Gowda
Publikováno v:
Journal of Global Optimization. 74:285-295
In the setting of a Euclidean Jordan algebra V with symmetric cone $$V_+$$ , corresponding to a linear transformation M, a ‘weight vector’ $$w\in V_+$$ , and a $$q\in V$$ , we consider the weighted linear complementarity problem wLCP(M, w, q) and
Autor:
M. Seetharama Gowda, Juyoung Jeong
Publikováno v:
Linear Algebra and its Applications. 559:181-193
Let V be a Euclidean Jordan algebra of rank n. A set E in V is said to be a spectral set if there exists a permutation invariant set Q in R n such that E = λ − 1 ( Q ) , where λ : V → R n is the eigenvalue map that takes x ∈ V to λ ( x ) (th
Motivated by Horn's log-majorization (singular value) inequality $s(AB)\underset{log}{\prec} s(A)*s(B)$ and the related weak-majorization inequality $s(AB)\underset{w}{\prec} s(A)*s(B)$ for square complex matrices, we consider their Hermitian analogs
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::953b27e93474f4b0f41332596e7d8dc3
http://arxiv.org/abs/2003.12377
http://arxiv.org/abs/2003.12377