Zobrazeno 1 - 10
of 87
pro vyhledávání: '"M. Recla"'
Autor:
M. Recla, M. Schmitt
Publikováno v:
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol X-2-2024, Pp 193-200 (2024)
Rapid mapping demands efficient methods for a fast extraction of information from satellite data while minimizing data requirements. This paper explores the potential of deep learning for the generation of high-resolution urban elevation data from Sy
Externí odkaz:
https://doaj.org/article/02257a8b22cf48a1880b9f088eb02431
Autor:
M. Schmitt, M. Recla
Publikováno v:
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol XLIII-B2-2022, Pp 1139-1144 (2022)
Deep learning-based depth estimation has become an important topic in recent years, not only in the field of computer vision. Also in the context of remote sensing, scientists started a few years ago to adapt or develop suitable approaches to realize
Externí odkaz:
https://doaj.org/article/4faea50742b44dea9706a7e535eabf0e
Autor:
L Pellecchia, F. L. Nava, G. Tirone, E. Calabrese, M. Zuolo, L. Fabris, F. Paganelli, Alessandro Carrara, M. Costa, M. Ferrari, M. Recla, P Moscatelli, A. Dorna
Publikováno v:
Hernia. 25:1685-1692
The advantages offered by structured reporting have already been highlighted in the literature. However, there is still no evidence on the validity of this reporting method for the study of abdominal wall defects. This study aims to show the experien
Autor:
Anthony S. Castanza, Jill M. Recla, David Eby, Helga Thorvaldsdóttir, Carol J. Bult, Jill P. Mesirov
The Molecular Signatures Database (MSigDB) serves as the primary repository of biological signature gene sets for performing Gene Set Enrichment Analysis (GSEA). In the more than 15 years since its creation, MSigDB has served over 290,000 users in th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::c342e5d1a4968cadf541a1a5887f4f70
https://doi.org/10.1101/2022.10.24.513539
https://doi.org/10.1101/2022.10.24.513539
Autor:
Anthony S. Castanza, Jill M. Recla, David Eby, Alexander T. Wenzel, Helga Thorvaldsdottir, Carol J. Bult, Jill P. Mesirov
Publikováno v:
Cancer Research. 83:6568-6568
In 2005, we introduced the Gene Set Enrichment Analysis (GSEA) method to enable the identification and estimation of significance of activated biological pathways and processes in molecular data. Serving a community of over 300,000 registered users,
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
A, Carrara, F L, Nava, M, Costa, L, Fabris, M, Zuolo, L, Pellecchia, P, Moscatelli, A, Dorna, E, Calabrese, M, Ferrari, F, Paganelli, M, Recla, G, Tirone
Publikováno v:
Hernia : the journal of hernias and abdominal wall surgery. 25(6)
The advantages offered by structured reporting have already been highlighted in the literature. However, there is still no evidence on the validity of this reporting method for the study of abdominal wall defects. This study aims to show the experien
Autor:
Georgi Kolishovski, Omoluyi Adesanya, Paul Hale, Al Simons, Carol J. Bult, Jill M Recla, Govindarajan Kunde-Ramamoorthy, Anna Lamoureux, Joel E. Richardson
Publikováno v:
Mammalian Genome
Visualizing regions of conserved synteny between two genomes is supported by numerous software applications. However, none of the current applications allow researchers to select genome features to display or highlight in blocks of synteny based on t
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Katie H. Long, Nicole Glidden, Erin E. Young, Elissa J. Chesler, Raymond F. Robledo, Carol J. Bult, Daniel M. Gatti, Zhong-Wei Zhang, Jennifer L Ryan, Jill M Recla, Guoqiang Hou, Gary A. Churchill, Richard S Maser, Jason A. Bubier
Publikováno v:
Pain
Identification of genetic variants that influence susceptibility to pain is key to identifying molecular mechanisms and targets for effective and safe therapeutic alternatives to opioids. To identify genes and variants associated with persistent pain